欧美成人永久免费_欧美日本五月天_A级毛片免看在线_国产69无码,亚洲无线观看,精品人妻少妇无码视频,777无码专区,色大片免费网站大全,麻豆国产成人AV网,91视频网络,亚洲色无码自慰

當前位置:網(wǎng)站首頁 >> 作文 >> 2023年乘法口算速算技巧優(yōu)秀(10篇)

2023年乘法口算速算技巧優(yōu)秀(10篇)

格式:DOC 上傳日期:2023-04-05 10:23:22
2023年乘法口算速算技巧優(yōu)秀(10篇)
時間:2023-04-05 10:23:22     小編:zdfb

在日常的學(xué)習(xí)、工作、生活中,,肯定對各類范文都很熟悉吧,。相信許多人會覺得范文很難寫?下面是小編為大家收集的優(yōu)秀范文,,供大家參考借鑒,希望可以幫助到有需要的朋友。

乘法口算速算技巧篇一

利用“首同末合十”的方法來訓(xùn)練,。“首同末合十”法是兩個兩位數(shù),,它們的十位數(shù)相同,,而個位數(shù)相加的和是10。利用“首同末合十”的兩個兩位數(shù)相乘,,積的右邊的兩位數(shù)正好是個位數(shù)的乘積,,積的左面的數(shù)正好是十位上的數(shù)乘以比它大1的積,合并起來就是它們的乘積,。例如,,54×56=3024,81×89=7209,。

教師要扎實開展好現(xiàn)行教材四年級數(shù)學(xué)下冊中計算的五大運算定律的教學(xué)(加法交換律,、加法結(jié)合律、乘法交換律,、乘法結(jié)合律,、乘法分配律),引導(dǎo)學(xué)生弄清來龍去脈,不讓一個學(xué)生掉隊,,訓(xùn)練每個學(xué)生能自覺運用簡便辦法,,能針對不一樣題型靈活選擇簡便方法正確而快捷地進行計算。

形如73與37,、185與581等的數(shù)稱為“數(shù)字顛倒”的兩,、三位數(shù),巧算方法為:

1,、數(shù)字顛倒的兩位數(shù)減法,,可用兩位數(shù)字中的大數(shù)減去小數(shù),再乘以9,,積就是它們的差,。如73-37=(7-3)×9=36,82-28=(8-2)×9=54,。

2,、數(shù)字顛倒的三位數(shù)減法,可用三位數(shù)中最大數(shù)減去最小數(shù),,再乘以9,,乘積分兩邊,中間填上9,,就是它們的差,。比如,581-158=(8-1)×9=63,,所以851-158=693,。

在一個僅有二級運算的題里,按順序計算需要多步計算,,利用乘除法的關(guān)系進行計算就會簡便,。比如,

24÷18×36÷12=(24÷18)×(36÷12)=2418×3612=4,。

有些除法計算題直接計算比較繁瑣,,并且容易算錯,利用“擴縮規(guī)律”進行合理的變形能夠找到簡便的解決方法,。比如,,

7÷25=(7×4)÷(25×4)=28÷100=0。28,,

24÷125=(24×8)÷(125×8)=192÷1000=0.192,。

任意的兩位數(shù)乘上99或任意的三位數(shù)乘上999的速算法叫做“左右兩數(shù)合并法”。

1,、任意兩位數(shù)乘上99的巧算方法是,,將這個任意的兩位數(shù)減去1,,作為積的左面的兩位數(shù)字,再將100減去這個任意兩位數(shù)的差作為積的右邊兩位數(shù),,合并起來就是它們的積,。例如,62×99=6138,,48×99=4752,。

2、任意三位數(shù)乘上999的巧算方法,,就是將這個任意的三位數(shù)減去1,,作為積的左面的三位數(shù)字,再將1000減去這個任意三位數(shù)的差作為積的右邊的三位數(shù)字,,合并起來就是它們的積,。例如,,781×999=780219,,396×999=395604。

一個數(shù)乘上15的速算方法叫做“添零加半”,。比如,,26×15將26后面添0得260,再加上260的一半130,,即260+130=390,,所以26×15=360。

有些計算題,,乍看起來都與運算定律沒有關(guān)系,,但經(jīng)過變形后,直接地應(yīng)用運算定律來進行計算,。

任何數(shù)同11相乘,,只要把原數(shù)的個位移到積的個位的位置,最高位移到積的最高位的位置,,中間的數(shù)分別是個位上的數(shù)加十位上的數(shù)的和就是十位,,十位上的數(shù)加百位上的和就是百位……如果相加的數(shù)的和滿十要向前一位數(shù)進1。比如,,124×11=1364,,568×11=6248。

“十加個減法”就是任何兩位數(shù)加上9的和,,能夠把這個兩位數(shù)變成十位加1個位減1的數(shù),,即36+9=45,17+9=26,。這種計算技巧適合低年級的小學(xué)生,。

很多學(xué)生計算結(jié)果不正確是由于馬虎,、粗心等不良習(xí)慣造成的。培養(yǎng)學(xué)生良好計算習(xí)慣時,,教師要講究訓(xùn)練形式,,激發(fā)學(xué)生計算興趣,寓教于樂,,采用多樣化形式訓(xùn)練,。如用游戲、競賽,、卡片,、小黑板視算、聽算,、限時口算,、自編計算題、小故事等多種形式訓(xùn)練,,教師要有耐心,,有恒心,要統(tǒng)一辦法與要求,,要堅持不懈,,抓到底。教師要引導(dǎo)學(xué)生養(yǎng)成良好的審題習(xí)慣,、書寫習(xí)慣和檢驗習(xí)慣,。

乘法口算速算技巧篇二

例如:43x47,即是兩個因數(shù)的第一個數(shù)字都是4,,第二個是3+7=10,,故稱頭同尾和十。

這種速算技巧是頭x(頭+1)寫前面,,尾x尾寫后面,。

例如:27x87,即是兩個因數(shù)的第一個數(shù)字是2+8=10,,第二個都是7,,故稱尾同頭和十。

這種速算技巧是頭x頭+尾寫前面,,尾x尾寫后面,。

速算技巧:偶數(shù)÷2后添0得結(jié)果。

例如:28x5,,能夠這么算28÷2=14,,14后面添個0得到140,即是28x5=140,。

又如:466x5,,能夠這么算466÷2=233,,233后面添個0得到2330,即是466x5=2330,。

速算技巧:偶數(shù)+偶數(shù)的一半后添0

例如:28x15,,能夠這么算28+28÷2=42,42后面添個0得到420,,即是28x15=420,。

又如:466x15,能夠這么算466+466÷2=699,,699后面添個0得到6990,,即是466x15=6990。

速算技巧:頭尾相同,,中間相加

例如:234x11,,運算方法是2(2+3)(3+4)4,結(jié)果即是234x11=2574

又如:724x11,,運算方法是7(7+2)(2+4)4,,結(jié)果即是724x11=7964

可是,如果中間相加的數(shù)大于或等于10時,,前面一個數(shù)就得加1,。

比如:756x11,即7+5=12,、5+6=11了,那運算結(jié)果不是712116,,而是8316,,你會了嗎?

乘法口算速算技巧篇三

魏德武速算

加法速算:計算任意位數(shù)的加法速算,,方法很簡單學(xué)習(xí)者只要熟記一種加法速算通用口訣 ——“本位相加(針對進位數(shù)) 減加補,,前位相加多加一 ”就能夠徹底解決任意位數(shù)從高位數(shù)到低位數(shù)的加法速算問題。

例如:(1),,67+48=(6+5)×10+(7-2)=115,,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

減法速算:計算任意位數(shù)的減法速算方法也同樣是用一種減法速算通用口訣 ——“本位相減(針對借位數(shù)) 加減補,,前位相減多減一 ”就能夠徹底解決任意位數(shù)從高位數(shù)到低位數(shù)的減法速算問題,。

例如:(1),67-48=(6-5)×10+(7+2)=19,,(2),,758-496=(7-5)×100+(5+1)×10+8-6=262即可。

乘法速算:乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗數(shù)×10,。

速算嬗數(shù)|=(a-c)×d+(b+d-10)×c,,,,

速算嬗數(shù)‖=(a+b-10)×c+(d-c)×a,

速算嬗數(shù)ⅲ=a×d-‘b’(補數(shù))×c ,。 更是獨秀一枝,,無與倫比。

(1),,用第一種速算嬗數(shù)=(a-c)×d+(b+d-10)×c,,適用于首同尾任意的任意二位數(shù)乘法速算。

比如 :26×28,, 47×48,,87×84——等等,其嬗數(shù)一目了然分別等于“8”,,“20 ”和“8”即可,。

(2), 用第二種速算嬗數(shù)=(a+b-10)×c+(d-c)×a適用于一因數(shù)的二位數(shù)之和接近等于“10”,,另一因數(shù)的二位數(shù)之差接近等于“0”的任意二位數(shù)乘法速算 ,,

比如 :28×67, 47×98,, 73×88——等等 ,,其嬗數(shù)也同樣能夠一目了然分別等于“2”,“5 ”和“0”即可,。

(3),, 用第三種速算嬗數(shù)=a×d-‘b’(補數(shù))×c 適用于任意二位數(shù)的乘法速算。

乘法口算速算技巧篇四

任意三位數(shù)平方的速算方法,,如:126×126,。

速算方法:將個位數(shù)與個位數(shù)相乘,得6×6=36,,將6寫在最終答案的個位數(shù)上,,向十位進3;將百位和十位上的數(shù)與個位上的數(shù)相乘再擴大兩倍,,即12×6=72,,再乘以2得144,將4寫在最終答案的十位數(shù)上,,加上前面的進位3,,最終答案的十位數(shù)上的數(shù)字為7,向百位數(shù)進位14,;將百位數(shù)和十位數(shù)上的數(shù)字進行平方,,即12×12=144,加上進位14,得158,,連起來就是126×126=15876,。

如:524×524=52×52…52x4x2…4×4=(25…20…4)…416…16=2704…(416+1)…6=274576。

423×423=42×42…42x3x2…3×3=(16…16…4)…252…9=1764…252…9=178929,。

個位數(shù)是5的三位數(shù)平方速算方法,,如:115×115。

速算方法:將個位數(shù)前面的數(shù)11加1,,得12乘以個位數(shù)前面的數(shù)字11,,即12×11=132;將個位與個位相乘得出的數(shù)(這個數(shù)肯定都是25)寫在最終答案的十位和個位上,;連起來就是115×115=13225,。

如:435×435=(43×44)…25=(16…28…12)…25=189225。

如:755×755=(75×76)…25=(49…77…30)…25=570025,。

任意兩位數(shù)與兩位數(shù)相乘的速算方法,,如:21×32。

速算方法:將兩個十位數(shù)上的數(shù)字相乘,,寫在最終答案的百位數(shù)上,,即2×3=6;將兩個兩位數(shù)的個位與十位交叉相乘然后再相加寫在最終答案的十位數(shù)上,,即2×2+1×3=7,;將兩個個位數(shù)上的數(shù)字相乘得到的答案寫在最終答案的個位數(shù)上,即1×2=2,;連起來就是21×32=672,。

如:12×31=1×3…(1×1)+(2×3)…2×1=3…7…2=372。

13×23=1×2…(1×3)+(3×2)…3×3=299,。

那里要注意:如果寫在最終答案個位和十位數(shù)上的數(shù)大于9的話要向前面進位,。

如:37×49=3×4…(3×9)+(7×4)…7×9=12…55…63=12…(55+6)…3=(12+6)…1…3=1813。

35×82=3×8…(3×2)+(5×8)…5×2=24…46…10=2870,。

九十幾與九十幾相乘的速算方法,如:98×93,。

速算方法:將100減去其中一個減數(shù),,即100-98=2,再用另一個減數(shù)減去得到的數(shù),,即93-2=91,;將100分別減去兩個減數(shù),得到的兩個數(shù)再相乘,,即(100-98)x(100-93)=14,;連起來就是98×93=9114。

如:97×92=97-(100-92)…(100-97)x(100-92)=97-8…3×8=8924,。

96×95=91…20=9120,。

那里要注意,,如果第二步中100分別減去減數(shù)再相乘得到的數(shù)一位數(shù),那么要在前面加0,。

如:98×97=98-3…2×3=95…06=9506,。

99×94=93…6=9306。

兩位數(shù)中互補數(shù)與疊數(shù)相乘的速算方法,,首先要講講什么是互補數(shù)和疊數(shù),。

互補數(shù),相信前面的文章中都有提到,,就是兩個數(shù)相加成整十,、整百、整千,。如:7和3是互補數(shù),、48和52是互補數(shù)、127和873是互補數(shù),。

疊數(shù),,就更好理解了,就是個位,、十位,、百位都一樣的數(shù)。如66,、555,、222等都是疊數(shù)。

下頭就來講講兩位數(shù)中互補數(shù)與疊數(shù)相乘的速算方法,,如:73×66,。

速算方法:將互補數(shù)中的十位數(shù)加上數(shù)字1然后再乘以疊數(shù)中的個位數(shù),即(7+1)x6=48,;將兩個個位數(shù)上的數(shù)字相乘,,即3×6=18;連起來就是73×66=4818,。

如:82×77=(8+1)x7…2×7=63…14=6314,。

64×99=63…36=6336。

那里要注意,,如果兩個個位數(shù)上的數(shù)字相乘得到的數(shù)是個位數(shù)的話,,要在前面加個0。

如:64×22=(6+1)x2…4×2=14…8=14…08=1408,。

91×33=30…3=3003,。

十位數(shù)為0的兩個三位數(shù)相乘的速算方法,如:302×407。

速算方法:第一步將兩個百位數(shù)上的數(shù)字相乘,,即3×4=12,;第二步將百位數(shù)與個位數(shù)交叉相乘然后再相加,即3×7+2×4=29,;第三步將個位與個位相乘,,即2×7=14;連起來就是302×407=122914,。

如:506×803=(5×8)…(5×3)+(6×8)…6×3=40…63…18=406318,。

403×207=8…34…21=83421。

那里要注意,,如果第一步和第二步得到的數(shù)是一位數(shù),,那么要在前面加個0。

如:402×201=(4×2)…(4×1)+(2×2)…2×1=8…8…2=8…08…02=80802,。

如:302×102=3…8…4=30804,。

那里還要注意就是如果第二步得到的數(shù)是三位數(shù),那么就要向前面進位,。

如:908×508=(9×5)…(9×8)+(8×5)…(8×8)=45…112…64=(45+1)…12…54=461254,。

所以,只要碰到十位數(shù)是0的兩個三位數(shù)相乘都能夠用上頭的這個速算方法,,比傳統(tǒng)方法算會快很多,,并且也不容易出錯。

十位數(shù)是1的兩位數(shù)相乘的速算方法

十幾與十幾相乘的速算方法,,如:13×12,。

速算方法:將兩個十位數(shù)上的數(shù)字相乘寫在最終答案的百位數(shù)上,即1×1=1,;將兩個個位數(shù)上的數(shù)字相加寫在最終答案的十位數(shù)上,,即3+2=5;將兩個個位數(shù)上的數(shù)字相乘寫在最終答案的個位數(shù)上,,即3×2=6,;連起來就是13×12=156。

如:17×11=(1×1)…(7+1)…(7×1)=1…8…7=187,。

14×12=1…6…8=168,。

那里要注意,無論是兩個個位數(shù)相加還是相乘,,得到的數(shù)大于9都要向前進位。

如:16×18=(1×1)…(6+8)…(6×8)=1…14…48=(1+1)…(4+4)…8=288,。

17×19=1…16…63=3…2…3=323,。

《個位數(shù)互補、十位數(shù)相同的兩個兩位數(shù)相乘速算方法》

也就是個位數(shù)相同、十位數(shù)互補的兩位數(shù)相乘的速算方法,,如:48×68,。

速算方法:將兩個十位數(shù)上的數(shù)字相乘,即4×6=24,,再加上個位數(shù)上的數(shù)字即24+8=32,;然后將兩個個位數(shù)上的數(shù)字相乘,即8×8=64,;連起來就是48×68=3264,。

如:27×87=(2×8+7)…7×7=23…49=2349。

39×79=(3×7+9)…9×9=30…81=3081,。

那里要注意,,如果兩個個位數(shù)上的數(shù)字相乘得到的是一位數(shù),那么要在前面加個0,。

如:72×32=(7×3+2)…2×2=23…4=23…04=2304,。

83×23=(8×2+3)…3×3=19…9=1909。

個位數(shù)是1的兩位數(shù)相乘的速算方法,,如:41×21,。

速算方法:將十位數(shù)上的數(shù)字與十位數(shù)上的數(shù)字相乘寫在最終答案的百位數(shù)上,即4×2=8,;將十位數(shù)上的.數(shù)字與十位數(shù)上的數(shù)字相加寫在最終答案的十位數(shù)上,,即4+2=6;將個位數(shù)上的數(shù)字與個位數(shù)上的數(shù)字相乘寫在最終答案的個位數(shù)上,,即1×1=1,;連起來就是41×21=861。

如:51×31=(5×3)…(5+3)…(1×1)=15…8…1=1581,。

那里要注意,,如果第二步十位數(shù)上的數(shù)字與十位數(shù)上的數(shù)字相加大于9,就要向百位進1,。

如:71×51=(7×5)…(7+5)…(1×1)=35…12…1=(35+1)…2…1=3621,。

所以,以后只要碰到個位數(shù)為1的兩個兩位數(shù)相乘就能夠用這個辦法,,只需要計算個位數(shù)與個位數(shù)的相乘和十以內(nèi)的加法,,就能夠既快又準確的算出答案。

互補數(shù)就是兩個數(shù)字相加等于10,、100,、1000等的數(shù)字,在那里的速算方法中,,提到的互補數(shù)位數(shù)都是相同的,,也就是兩位與兩位互補,,三位與三位互補。

兩個互補數(shù)相減的速算方法,,如:73-27,。

速算方法:將減數(shù)減去50再乘以2即為最終答案,也就是說將減數(shù)73-50=23,,在乘以2,,得46即為最終答案。

如:81-19=(81-50)x2=31×2=62,。

63-37=(63-50)x2=26,。

一個減數(shù)減去50,然后再乘以2是不是很好算,?也不容易出錯,?比用傳統(tǒng)方法在稿紙上運算是不是快很多了?

那里是兩位數(shù)互補數(shù)相減,,那么互補的三位數(shù)相減呢,?也是一樣的,只是將減去50變成減去500,。

如:852-148=(852-500)x2=252×2=504,。

746-254=(746-500)x2=492。

四位數(shù)也一樣的變法,,將50變成5000,。

如:8426-1574=(8426-5000)x2=6852。

只要記住兩點,,一,、這兩數(shù)位數(shù)相同,二,、這兩數(shù)互補,,那么都能夠用這速算方法。

11這個數(shù)字在兩位數(shù)中算是比較特殊的

如:11×26,。方法是十分簡單的,。

首先,將與11相乘的任意兩位數(shù)從中間分開,,原十位數(shù)變?yōu)榘傥粩?shù),,個位數(shù)還是個位數(shù),然后將這任意兩位數(shù)個位與十位相加放在中間,。

如:11×26=2…(2+6)…6=2…8…6=286,。

11×45=4…(4+5)…5=495。

是不是很簡單,?

那里還要注意如果這個任意兩位數(shù)個位數(shù)與十位數(shù)相加大于9就要向百位進1,。

如:11×68=6…(6+8)…8=6…14…8=(6+1)…4…8=748,。

11×57=5…(5+7)…7=5…12…7=627。

個位數(shù)比十位數(shù)大1乘以9的速算方法

如:45×9,。將代表個位數(shù)5的左手小拇指彎下來,,彎下來的手指左邊剩4根手指記做4,彎下來的手指記做0,彎下來的手指右邊剩5根手指記做5,,合起來就是405,,也就是45×9=405。

67×9。將代表個位數(shù)7的右手無名指彎下來,彎下來的手指左邊剩6根手指記做6,彎下來的手指記做0,彎下來的手指右邊剩3根手指記做3,合起來就是603。

乘法口算速算技巧篇五

①506-397②323-189③467+997④987-178-222-390

解答:

①=500+6-400+3(把多減的 3再加上)=109

②式=323-200+11(把多減的11再加上)

=123+11=134

③式=467+1000-3(把多加的3再減去)

=1464

④式=987-(178+222)-390=987-400-400+10=197

① 188+873②548+996③9898+203

解答:①式=(188+12)+(873-12)(熟練之后,此步可略)

=200+861=1061

②式=(548-4)+(996+4)

=544+1000=1544

③式=(9898+102)+(203-102)

=10000+101=10101

①300-73-27② 1000-90-80-20-10

解答:①式= 300-(73+ 27)

=300-100=200

②式=1000-(90+80+20+10)

=1000-200=800

5869-457-243原式=5869-(457+243)=5869-700=5169

(46+56)×(172÷4)+14

解答:原式=102×43+14=(100+2)×43+14=4300+86+14=4300+100=4400,。

速算與巧算一個重要技巧是湊整,,包括通過加減一個數(shù)湊成整十整百,。特別要注意末尾能湊成10的數(shù)字,。

一只蜘蛛八條腿,一只蜻蜒有六條腿,、二對翅膀,,蟬有六條腿和一對翅膀。現(xiàn)有這三種小昆蟲共18只,,共有118條腿和20對翅膀,,問每種小昆蟲各有幾只?

解答:這個問題比前幾個問題要復(fù)雜一些。但仔細考慮,,發(fā)現(xiàn)蜻蜓和蟬的腿條數(shù)都是6,,因此可從腿的條數(shù)入手。

假設(shè)18只全是蜘蛛,,那么共有8×18=144(條)腿,。但實際上只有118條,,兩者相差144-118=26(條),產(chǎn)生差異的原因是6條腿的蜻蜒和蟬都作為8條腿的蜘蛛了,,每一只相差2條腿,。被當作蜘蛛的蜻蜒和蟬共有26÷2=13(只)。

因此,,蜘蛛有18-13=5(只),。

再假設(shè)13只昆蟲都是蜻蜒,應(yīng)有13×2=26(對)翅膀,,與實際翅膀數(shù)相差26-20=6(對),每把一只蟬當一只蜻蜒,,翅膀數(shù)就增加1對,,所以蟬的只數(shù)是6÷1=6(只),蜻蜓數(shù)是13-6=7(只),。

乘法口算速算技巧篇六

魏德武速算

加法速算:計算任意位數(shù)的加法速算,,方法很簡單學(xué)習(xí)者只要熟記一種加法速算通用口訣 ——“本位相加(針對進位數(shù)) 減加補,前位相加多加一 ”就能夠徹底解決任意位數(shù)從高位數(shù)到低位數(shù)的加法速算問題,。

例如:(1),,67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可,。

減法速算:計算任意位數(shù)的減法速算方法也同樣是用一種減法速算通用口訣 ——“本位相減(針對借位數(shù)) 加減補,,前位相減多減一 ”就能夠徹底解決任意位數(shù)從高位數(shù)到低位數(shù)的減法速算問題。

例如:(1),,67-48=(6-5)×10+(7+2)=19,,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可,。

乘法速算:乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗數(shù)×10,。

速算嬗數(shù)|=(a-c)×d+(b+d-10)×c,,,

速算嬗數(shù)‖=(a+b-10)×c+(d-c)×a,,

速算嬗數(shù)ⅲ=a×d-‘b’(補數(shù))×c 。 更是獨秀一枝,,無與倫比,。

(1),用第一種速算嬗數(shù)=(a-c)×d+(b+d-10)×c,,適用于首同尾任意的任意二位數(shù)乘法速算,。

比如 :26×28, 47×48,,87×84——等等,,其嬗數(shù)一目了然分別等于“8”,,“20 ”和“8”即可。

(2),, 用第二種速算嬗數(shù)=(a+b-10)×c+(d-c)×a適用于一因數(shù)的二位數(shù)之和接近等于“10”,,另一因數(shù)的二位數(shù)之差接近等于“0”的任意二位數(shù)乘法速算 ,

比如 :28×67,, 47×98,, 73×88——等等 ,其嬗數(shù)也同樣能夠一目了然分別等于“2”,,“5 ”和“0”即可,。

(3), 用第三種速算嬗數(shù)=a×d-‘b’(補數(shù))×c 適用于任意二位數(shù)的乘法速算,。

乘法口算速算技巧篇七

利用“首同末合十”的方法來訓(xùn)練,。“首同末合十”法是兩個兩位數(shù),,它們的十位數(shù)相同,,而個位數(shù)相加的和是10。利用“首同末合十”的兩個兩位數(shù)相乘,,積的右邊的兩位數(shù)正好是個位數(shù)的乘積,,積的左面的數(shù)正好是十位上的數(shù)乘以比它大1的積,合并起來就是它們的乘積,。例如,,54×56=3024,81×89=7209,。

教師要扎實開展好現(xiàn)行教材四年級數(shù)學(xué)下冊中計算的五大運算定律的教學(xué)(加法交換律,、加法結(jié)合律、乘法交換律,、乘法結(jié)合律,、乘法分配律),引導(dǎo)學(xué)生弄清來龍去脈,,不讓一個學(xué)生掉隊,,訓(xùn)練每個學(xué)生能自覺運用簡便辦法,能針對不一樣題型靈活選擇簡便方法正確而快捷地進行計算,。

形如73與37,、185與581等的數(shù)稱為“數(shù)字顛倒”的兩、三位數(shù),,巧算方法為:

1,、數(shù)字顛倒的兩位數(shù)減法,可用兩位數(shù)字中的大數(shù)減去小數(shù),再乘以9,,積就是它們的差,。如73-37=(7-3)×9=36,82-28=(8-2)×9=54,。

2,、數(shù)字顛倒的三位數(shù)減法,可用三位數(shù)中最大數(shù)減去最小數(shù),,再乘以9,,乘積分兩邊,中間填上9,,就是它們的差,。比如,581-158=(8-1)×9=63,,所以851-158=693,。

在一個僅有二級運算的題里,按順序計算需要多步計算,,利用乘除法的關(guān)系進行計算就會簡便。比如,,

24÷18×36÷12=(24÷18)×(36÷12)=2418×3612=4,。

有些除法計算題直接計算比較繁瑣,并且容易算錯,,利用“擴縮規(guī)律”進行合理的變形能夠找到簡便的解決方法,。比如,

7÷25=(7×4)÷(25×4)=28÷100=0,。28,,

24÷125=(24×8)÷(125×8)=192÷1000=0.192。

任意的兩位數(shù)乘上99或任意的三位數(shù)乘上999的速算法叫做“左右兩數(shù)合并法”,。

1,、任意兩位數(shù)乘上99的巧算方法是,將這個任意的兩位數(shù)減去1,,作為積的左面的兩位數(shù)字,,再將100減去這個任意兩位數(shù)的差作為積的右邊兩位數(shù),合并起來就是它們的積,。例如,,62×99=6138,48×99=4752,。

2,、任意三位數(shù)乘上999的巧算方法,就是將這個任意的三位數(shù)減去1,作為積的左面的三位數(shù)字,,再將1000減去這個任意三位數(shù)的差作為積的右邊的三位數(shù)字,,合并起來就是它們的積。例如,,781×999=780219,,396×999=395604。

一個數(shù)乘上15的速算方法叫做“添零加半”,。比如,,26×15將26后面添0得260,再加上260的一半130,,即260+130=390,,所以26×15=360。

有些計算題,,乍看起來都與運算定律沒有關(guān)系,,但經(jīng)過變形后,直接地應(yīng)用運算定律來進行計算,。

任何數(shù)同11相乘,,只要把原數(shù)的個位移到積的個位的位置,最高位移到積的最高位的位置,,中間的數(shù)分別是個位上的數(shù)加十位上的數(shù)的和就是十位,,十位上的數(shù)加百位上的和就是百位……如果相加的數(shù)的和滿十要向前一位數(shù)進1。比如,,124×11=1364,,568×11=6248。

“十加個減法”就是任何兩位數(shù)加上9的和,,能夠把這個兩位數(shù)變成十位加1個位減1的數(shù),,即36+9=45,17+9=26,。這種計算技巧適合低年級的小學(xué)生,。

很多學(xué)生計算結(jié)果不正確是由于馬虎、粗心等不良習(xí)慣造成的,。培養(yǎng)學(xué)生良好計算習(xí)慣時,,教師要講究訓(xùn)練形式,激發(fā)學(xué)生計算興趣,,寓教于樂,,采用多樣化形式訓(xùn)練。如用游戲,、競賽,、卡片、小黑板視算、聽算,、限時口算,、自編計算題、小故事等多種形式訓(xùn)練,,教師要有耐心,,有恒心,要統(tǒng)一辦法與要求,,要堅持不懈,,抓到底。教師要引導(dǎo)學(xué)生養(yǎng)成良好的審題習(xí)慣,、書寫習(xí)慣和檢驗習(xí)慣,。

乘法口算速算技巧篇八

例如:43x47,即是兩個因數(shù)的第一個數(shù)字都是4,,第二個是3+7=10,,故稱頭同尾和十。

這種速算技巧是頭x(頭+1)寫前面,,尾x尾寫后面,。

例如:27x87,即是兩個因數(shù)的第一個數(shù)字是2+8=10,,第二個都是7,,故稱尾同頭和十。

這種速算技巧是頭x頭+尾寫前面,,尾x尾寫后面。

速算技巧:偶數(shù)÷2后添0得結(jié)果,。

例如:28x5,,能夠這么算28÷2=14,14后面添個0得到140,,即是28x5=140,。

又如:466x5,能夠這么算466÷2=233,,233后面添個0得到2330,,即是466x5=2330。

速算技巧:偶數(shù)+偶數(shù)的一半后添0

例如:28x15,,能夠這么算28+28÷2=42,,42后面添個0得到420,即是28x15=420,。

又如:466x15,,能夠這么算466+466÷2=699,699后面添個0得到6990,即是466x15=6990,。

速算技巧:頭尾相同,,中間相加

例如:234x11,運算方法是2(2+3)(3+4)4,,結(jié)果即是234x11=2574

又如:724x11,,運算方法是7(7+2)(2+4)4,結(jié)果即是724x11=7964

可是,,如果中間相加的數(shù)大于或等于10時,,前面一個數(shù)就得加1。

比如:756x11,,即7+5=12,、5+6=11了,那運算結(jié)果不是712116,,而是8316,,你會了嗎?

乘法口算速算技巧篇九

①506-397②323-189③467+997④987-178-222-390

解答:

①=500+6-400+3(把多減的 3再加上)=109

②式=323-200+11(把多減的11再加上)

=123+11=134

③式=467+1000-3(把多加的3再減去)

=1464

④式=987-(178+222)-390=987-400-400+10=197

① 188+873②548+996③9898+203

解答:①式=(188+12)+(873-12)(熟練之后,,此步可略)

=200+861=1061

②式=(548-4)+(996+4)

=544+1000=1544

③式=(9898+102)+(203-102)

=10000+101=10101

①300-73-27② 1000-90-80-20-10

解答:①式= 300-(73+ 27)

=300-100=200

②式=1000-(90+80+20+10)

=1000-200=800

5869-457-243原式=5869-(457+243)=5869-700=5169

(46+56)×(172÷4)+14

解答:原式=102×43+14=(100+2)×43+14=4300+86+14=4300+100=4400,。

速算與巧算一個重要技巧是湊整,包括通過加減一個數(shù)湊成整十整百,。特別要注意末尾能湊成10的數(shù)字,。

一只蜘蛛八條腿,一只蜻蜒有六條腿,、二對翅膀,,蟬有六條腿和一對翅膀。現(xiàn)有這三種小昆蟲共18只,,共有118條腿和20對翅膀,,問每種小昆蟲各有幾只?

解答:這個問題比前幾個問題要復(fù)雜一些。但仔細考慮,,發(fā)現(xiàn)蜻蜓和蟬的腿條數(shù)都是6,,因此可從腿的條數(shù)入手。

假設(shè)18只全是蜘蛛,,那么共有8×18=144(條)腿,。但實際上只有118條,兩者相差144-118=26(條),,產(chǎn)生差異的原因是6條腿的蜻蜒和蟬都作為8條腿的蜘蛛了,,每一只相差2條腿。被當作蜘蛛的蜻蜒和蟬共有26÷2=13(只),。

因此,,蜘蛛有18-13=5(只),。

再假設(shè)13只昆蟲都是蜻蜒,應(yīng)有13×2=26(對)翅膀,,與實際翅膀數(shù)相差26-20=6(對),,每把一只蟬當一只蜻蜒,翅膀數(shù)就增加1對,,所以蟬的只數(shù)是6÷1=6(只),,蜻蜓數(shù)是13-6=7(只)。

乘法口算速算技巧篇十

任意三位數(shù)平方的速算方法,,如:126×126,。

速算方法:將個位數(shù)與個位數(shù)相乘,得6×6=36,,將6寫在最終答案的個位數(shù)上,,向十位進3;將百位和十位上的數(shù)與個位上的數(shù)相乘再擴大兩倍,,即12×6=72,,再乘以2得144,將4寫在最終答案的十位數(shù)上,,加上前面的進位3,,最終答案的十位數(shù)上的數(shù)字為7,向百位數(shù)進位14,;將百位數(shù)和十位數(shù)上的數(shù)字進行平方,,即12×12=144,加上進位14,,得158,,連起來就是126×126=15876。

如:524×524=52×52…52x4x2…4×4=(25…20…4)…416…16=2704…(416+1)…6=274576,。

423×423=42×42…42x3x2…3×3=(16…16…4)…252…9=1764…252…9=178929,。

個位數(shù)是5的三位數(shù)平方速算方法,如:115×115,。

速算方法:將個位數(shù)前面的數(shù)11加1,得12乘以個位數(shù)前面的數(shù)字11,,即12×11=132,;將個位與個位相乘得出的數(shù)(這個數(shù)肯定都是25)寫在最終答案的十位和個位上;連起來就是115×115=13225,。

如:435×435=(43×44)…25=(16…28…12)…25=189225,。

如:755×755=(75×76)…25=(49…77…30)…25=570025。

任意兩位數(shù)與兩位數(shù)相乘的速算方法,,如:21×32,。

速算方法:將兩個十位數(shù)上的數(shù)字相乘,,寫在最終答案的百位數(shù)上,即2×3=6,;將兩個兩位數(shù)的個位與十位交叉相乘然后再相加寫在最終答案的十位數(shù)上,,即2×2+1×3=7;將兩個個位數(shù)上的數(shù)字相乘得到的答案寫在最終答案的個位數(shù)上,,即1×2=2,;連起來就是21×32=672。

如:12×31=1×3…(1×1)+(2×3)…2×1=3…7…2=372,。

13×23=1×2…(1×3)+(3×2)…3×3=299,。

那里要注意:如果寫在最終答案個位和十位數(shù)上的數(shù)大于9的話要向前面進位。

如:37×49=3×4…(3×9)+(7×4)…7×9=12…55…63=12…(55+6)…3=(12+6)…1…3=1813,。

35×82=3×8…(3×2)+(5×8)…5×2=24…46…10=2870,。

九十幾與九十幾相乘的速算方法,如:98×93,。

速算方法:將100減去其中一個減數(shù),,即100-98=2,再用另一個減數(shù)減去得到的數(shù),,即93-2=91,;將100分別減去兩個減數(shù),得到的兩個數(shù)再相乘,,即(100-98)x(100-93)=14,;連起來就是98×93=9114。

如:97×92=97-(100-92)…(100-97)x(100-92)=97-8…3×8=8924,。

96×95=91…20=9120,。

那里要注意,如果第二步中100分別減去減數(shù)再相乘得到的數(shù)一位數(shù),,那么要在前面加0,。

如:98×97=98-3…2×3=95…06=9506。

99×94=93…6=9306,。

兩位數(shù)中互補數(shù)與疊數(shù)相乘的速算方法,,首先要講講什么是互補數(shù)和疊數(shù)。

互補數(shù),,相信前面的文章中都有提到,,就是兩個數(shù)相加成整十、整百,、整千,。如:7和3是互補數(shù)、48和52是互補數(shù),、127和873是互補數(shù),。

疊數(shù),,就更好理解了,就是個位,、十位,、百位都一樣的數(shù)。如66,、555,、222等都是疊數(shù)。

下頭就來講講兩位數(shù)中互補數(shù)與疊數(shù)相乘的速算方法,,如:73×66,。

速算方法:將互補數(shù)中的十位數(shù)加上數(shù)字1然后再乘以疊數(shù)中的個位數(shù),即(7+1)x6=48,;將兩個個位數(shù)上的數(shù)字相乘,,即3×6=18;連起來就是73×66=4818,。

如:82×77=(8+1)x7…2×7=63…14=6314,。

64×99=63…36=6336。

那里要注意,,如果兩個個位數(shù)上的數(shù)字相乘得到的數(shù)是個位數(shù)的話,,要在前面加個0。

如:64×22=(6+1)x2…4×2=14…8=14…08=1408,。

91×33=30…3=3003,。

十位數(shù)為0的兩個三位數(shù)相乘的速算方法,如:302×407,。

速算方法:第一步將兩個百位數(shù)上的數(shù)字相乘,,即3×4=12;第二步將百位數(shù)與個位數(shù)交叉相乘然后再相加,,即3×7+2×4=29,;第三步將個位與個位相乘,即2×7=14,;連起來就是302×407=122914,。

如:506×803=(5×8)…(5×3)+(6×8)…6×3=40…63…18=406318。

403×207=8…34…21=83421,。

那里要注意,,如果第一步和第二步得到的數(shù)是一位數(shù),那么要在前面加個0,。

如:402×201=(4×2)…(4×1)+(2×2)…2×1=8…8…2=8…08…02=80802。

如:302×102=3…8…4=30804,。

那里還要注意就是如果第二步得到的數(shù)是三位數(shù),,那么就要向前面進位,。

如:908×508=(9×5)…(9×8)+(8×5)…(8×8)=45…112…64=(45+1)…12…54=461254。

所以,,只要碰到十位數(shù)是0的兩個三位數(shù)相乘都能夠用上頭的這個速算方法,,比傳統(tǒng)方法算會快很多,并且也不容易出錯,。

十位數(shù)是1的兩位數(shù)相乘的速算方法

十幾與十幾相乘的速算方法,,如:13×12。

速算方法:將兩個十位數(shù)上的數(shù)字相乘寫在最終答案的百位數(shù)上,,即1×1=1,;將兩個個位數(shù)上的數(shù)字相加寫在最終答案的十位數(shù)上,即3+2=5,;將兩個個位數(shù)上的數(shù)字相乘寫在最終答案的個位數(shù)上,,即3×2=6;連起來就是13×12=156,。

如:17×11=(1×1)…(7+1)…(7×1)=1…8…7=187,。

14×12=1…6…8=168。

那里要注意,,無論是兩個個位數(shù)相加還是相乘,,得到的數(shù)大于9都要向前進位。

如:16×18=(1×1)…(6+8)…(6×8)=1…14…48=(1+1)…(4+4)…8=288,。

17×19=1…16…63=3…2…3=323,。

《個位數(shù)互補、十位數(shù)相同的兩個兩位數(shù)相乘速算方法》

也就是個位數(shù)相同,、十位數(shù)互補的兩位數(shù)相乘的速算方法,,如:48×68。

速算方法:將兩個十位數(shù)上的數(shù)字相乘,,即4×6=24,,再加上個位數(shù)上的數(shù)字即24+8=32;然后將兩個個位數(shù)上的數(shù)字相乘,,即8×8=64,;連起來就是48×68=3264。

如:27×87=(2×8+7)…7×7=23…49=2349,。

39×79=(3×7+9)…9×9=30…81=3081,。

那里要注意,如果兩個個位數(shù)上的數(shù)字相乘得到的是一位數(shù),,那么要在前面加個0,。

如:72×32=(7×3+2)…2×2=23…4=23…04=2304。

83×23=(8×2+3)…3×3=19…9=1909,。

個位數(shù)是1的兩位數(shù)相乘的速算方法,,如:41×21,。

速算方法:將十位數(shù)上的數(shù)字與十位數(shù)上的數(shù)字相乘寫在最終答案的百位數(shù)上,即4×2=8,;將十位數(shù)上的.數(shù)字與十位數(shù)上的數(shù)字相加寫在最終答案的十位數(shù)上,,即4+2=6;將個位數(shù)上的數(shù)字與個位數(shù)上的數(shù)字相乘寫在最終答案的個位數(shù)上,,即1×1=1,;連起來就是41×21=861。

如:51×31=(5×3)…(5+3)…(1×1)=15…8…1=1581,。

那里要注意,,如果第二步十位數(shù)上的數(shù)字與十位數(shù)上的數(shù)字相加大于9,就要向百位進1,。

如:71×51=(7×5)…(7+5)…(1×1)=35…12…1=(35+1)…2…1=3621,。

所以,以后只要碰到個位數(shù)為1的兩個兩位數(shù)相乘就能夠用這個辦法,,只需要計算個位數(shù)與個位數(shù)的相乘和十以內(nèi)的加法,,就能夠既快又準確的算出答案。

互補數(shù)就是兩個數(shù)字相加等于10,、100,、1000等的數(shù)字,在那里的速算方法中,,提到的互補數(shù)位數(shù)都是相同的,,也就是兩位與兩位互補,三位與三位互補,。

兩個互補數(shù)相減的速算方法,,如:73-27。

速算方法:將減數(shù)減去50再乘以2即為最終答案,,也就是說將減數(shù)73-50=23,,在乘以2,得46即為最終答案,。

如:81-19=(81-50)x2=31×2=62,。

63-37=(63-50)x2=26。

一個減數(shù)減去50,,然后再乘以2是不是很好算,?也不容易出錯?比用傳統(tǒng)方法在稿紙上運算是不是快很多了,?

那里是兩位數(shù)互補數(shù)相減,,那么互補的三位數(shù)相減呢?也是一樣的,只是將減去50變成減去500,。

如:852-148=(852-500)x2=252×2=504,。

746-254=(746-500)x2=492。

四位數(shù)也一樣的變法,,將50變成5000。

如:8426-1574=(8426-5000)x2=6852,。

只要記住兩點,,一、這兩數(shù)位數(shù)相同,,二,、這兩數(shù)互補,那么都能夠用這速算方法,。

11這個數(shù)字在兩位數(shù)中算是比較特殊的

如:11×26,。方法是十分簡單的。

首先,,將與11相乘的任意兩位數(shù)從中間分開,,原十位數(shù)變?yōu)榘傥粩?shù),個位數(shù)還是個位數(shù),,然后將這任意兩位數(shù)個位與十位相加放在中間,。

如:11×26=2…(2+6)…6=2…8…6=286。

11×45=4…(4+5)…5=495,。

是不是很簡單,?

那里還要注意如果這個任意兩位數(shù)個位數(shù)與十位數(shù)相加大于9就要向百位進1。

如:11×68=6…(6+8)…8=6…14…8=(6+1)…4…8=748,。

11×57=5…(5+7)…7=5…12…7=627,。

個位數(shù)比十位數(shù)大1乘以9的速算方法

如:45×9。將代表個位數(shù)5的左手小拇指彎下來,,彎下來的手指左邊剩4根手指記做4,,彎下來的手指記做0,彎下來的手指右邊剩5根手指記做5,,合起來就是405,,也就是45×9=405。

67×9,。將代表個位數(shù)7的右手無名指彎下來,,彎下來的手指左邊剩6根手指記做6,彎下來的手指記做0,,彎下來的手指右邊剩3根手指記做3,,合起來就是603。

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
a.付費復(fù)制
付費獲得該文章復(fù)制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復(fù)制
付費后30天內(nèi)不限量復(fù)制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服