欧美成人永久免费_欧美日本五月天_A级毛片免看在线_国产69无码,亚洲无线观看,精品人妻少妇无码视频,777无码专区,色大片免费网站大全,麻豆国产成人AV网,91视频网络,亚洲色无码自慰

當前位置:網(wǎng)站首頁 >> 作文 >> 面的旋轉(zhuǎn)教學反思不足之處 北師大版六下面的旋轉(zhuǎn)教學反思(優(yōu)質(zhì)6篇)

面的旋轉(zhuǎn)教學反思不足之處 北師大版六下面的旋轉(zhuǎn)教學反思(優(yōu)質(zhì)6篇)

格式:DOC 上傳日期:2024-03-20 19:41:30
面的旋轉(zhuǎn)教學反思不足之處 北師大版六下面的旋轉(zhuǎn)教學反思(優(yōu)質(zhì)6篇)
時間:2024-03-20 19:41:30     小編:zdfb

無論是身處學校還是步入社會,大家都嘗試過寫作吧,,借助寫作也可以提高我們的語言組織能力,。相信許多人會覺得范文很難寫,?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧,。

面的旋轉(zhuǎn)教學反思不足之處實用篇一

“圓柱與圓錐”是小學六年級下學期的學習內(nèi)容,,這一單元包括圓柱的認識、表面積,、體積,、圓錐的認識、體積幾部分內(nèi)容。在以往的教材中,,不曾安排點線面體知識間溝通聯(lián)系的課,。這套新教材把面的旋轉(zhuǎn)與圓柱和圓錐的認識結(jié)合起來教學,很好的溝通了點線面體之間的聯(lián)系,,對學習圓柱和圓錐又起到省時省力的效果,。很好地幫助學生建立知識之間的內(nèi)在聯(lián)系,又培養(yǎng)了學生觀察,、類比,、歸納、概括能力,。

幾何中講“點”是有位置而無大小,,無厚薄,;“線”有長短無粗細,;“面”是有長寬而無薄厚;……又說,,世界上沒有真正的點,、線、面,、體,,這些東西是存在我們想象中,這種玄學的講法,,怎能不使學生迷糊,、頭痛。如何把抽象的知識轉(zhuǎn)化成學生易懂易掌握的知識呢,?我思考了很久決定用學生常見的煙花,、流星、汽車雨刷,、旋轉(zhuǎn)門等現(xiàn)象,,這些是點線面體在生活中的原型,我充分利用多媒體把靜態(tài)的知識轉(zhuǎn)化成動態(tài)的知識,,使學生在動態(tài)中充分感悟點運動形成線,,線運動形成面,面運動形成體,,很好的發(fā)展了學生的空間觀念,。教學結(jié)果證明學生對點線面體之間的聯(lián)系掌握得很好。

教學開始從學生熟悉的奧運會開幕式的鏡頭入手,,很自然的把點線面體這些知識與生活聯(lián)系起來,,使學生深刻體會數(shù)學來自生活,,就存在于身邊。引入圓柱和圓錐的學習環(huán)節(jié),,通過出示不同形狀的五盞燈,,引出小學階段所認識的所有立體圖形——長方體、正方體,、圓柱,、圓錐,、球。圓柱和圓錐區(qū)別于長、正方體的特征是圓柱和圓錐的側(cè)面都是曲面,而且底面是圓,,在這個環(huán)節(jié)中,,學生整體感知了圓柱,、圓錐區(qū)別于長、正方體的特征,同時在抽象出圓柱,、圓錐透視圖的過程中,,()學生對圓柱和圓錐的特征也有了初步感知,,這樣在大的立體圖形的背景下引出對圓柱和圓錐的研究,能夠幫助學生建立起知識之間的內(nèi)在聯(lián)系,,在抽象出立體圖形并區(qū)別它們的過程中,,已經(jīng)從整體上把握了圓柱和圓錐的特征。

教學先認識圓柱的特征,,在學生對圓柱進行了充分的研究和認識之后,,通過課件演示,圓柱變成圓臺,,再由圓臺變成圓錐,在觀察課件演示的過程中,學生已經(jīng)初步體會了圓錐和圓柱的區(qū)別,,即圓柱有2個底面,,圓錐只有1個底面;圓柱有無數(shù)條高,,而圓錐只有1條高。在研究圓錐特征的過程中,學生對圓錐的底面,、側(cè)面,、高的認識借鑒了對圓柱的研究過程,通過觀察,、操作,不斷進行比較、辨析,最后歸納,、概括出圓錐的特征,既認識了圓錐的特征,,又進一步加深了學生對圓柱特征的認識,,收到了事半功倍的效果,,因此這樣的教學真正實現(xiàn)了教學資源的最優(yōu)化。

我根據(jù)不同需要,,為學生提供更多的操作、辨析,、比較的機會,,而這種辨析和比較,,恰恰是提高學生學習質(zhì)量的關(guān)鍵,,因為在比較和辨析的過程中,學生對所學知識有了深層次的思考,、有了運用,,有了自己的判斷,不僅鞏固了本節(jié)課所學的知識,,幫助學生建立了空間觀念,,更重要的是培養(yǎng)了學生的觀察分析能力、類比能力和抽象概括能力,。

面的旋轉(zhuǎn)教學反思不足之處實用篇二

旋轉(zhuǎn)是生活中處處可見的現(xiàn)象,。在教學中,教師不僅僅是使學生感知和初步認識平移和旋轉(zhuǎn),,并滲透生活中處處有數(shù)學的思想,,還要使學生初步認識平移和旋轉(zhuǎn)的實質(zhì),并會在方格紙上畫出簡單平移后的圖形,。據(jù)此,,在教學中,教師注意從學生的生活感知出發(fā),。通過大量的情景設(shè)置來引發(fā)學生的學習興趣,,通過積極的探究活動來激發(fā)學生的思維,,并注意到布置學生的課后實踐,引導學生把學習過的數(shù)學知識回歸到現(xiàn)實生活中去,,培養(yǎng)學生觀察和思考興趣,。

第一:從“靜態(tài)”到“動態(tài)”,即由平面圖形經(jīng)過旋轉(zhuǎn)形成幾何體,。這不僅是對幾何體形成過程的學習,,同時讓學生體會面和體的關(guān)系也是發(fā)展空間觀念的重要途徑。

第二:從“整體辨認”到“局部刻畫特征”,,鼓勵學生在以前研究長方體,、正方體特征的基礎(chǔ)上,研究圓柱和圓錐的特征,。同時,對圓柱和圓錐的側(cè)面的認識,,使學生對面的認識從平面過渡到曲面,,這是認識上的再一次上升。

第三:從觀察圓柱,、圓錐實物到認識它們畫在平面上的“圖”,。課上體現(xiàn)的是“點動成線”“線動成面”“面動成體”的過程,關(guān)注“點,、線,、面、體”之間的聯(lián)系,,引導學生整體把握知識,。

感受的基礎(chǔ)上,又設(shè)計了一個操作活動,,通過快速旋轉(zhuǎn)小旗,,引導學生結(jié)合空間想象體會立體圖形的形成過程,發(fā)展學生的空間觀念,。

教學時,,注意準備了必要的操作材料,引導全體學生在觀察,、操作,、想象的基礎(chǔ)上進行交流,發(fā)展學生的空間觀念,。同時還把點,、線、面的運動過程制作成多媒體課件,,在想象的基礎(chǔ)上,,讓學生進一步觀察。另外,對于教材中通過旋轉(zhuǎn)形成的幾何體中出現(xiàn)的球和圓臺,,讓學生在“面旋轉(zhuǎn)成體”的過程中增加體驗,,鼓勵學生通過觀察、操作和想象認識這兩種幾何體,。課上注意把握好教學要求,,球只要求學生認識,不要求掌握特征,;圓臺不出名稱,,只要學生能連線,知道是由哪個平面圖形旋轉(zhuǎn)形成的就可以了,。

面的旋轉(zhuǎn)教學反思不足之處實用篇三

“圓柱與圓錐”是小學六年級下學期的學習內(nèi)容,,這一單元包括圓柱的認識、表面積,、體積,、圓錐的認識、體積幾部分內(nèi)容,。在以往的教材中,,不曾安排點線面體知識間溝通聯(lián)系的課。這套新教材把面的旋轉(zhuǎn)與圓柱和圓錐的認識結(jié)合起來教學,,很好的溝通了點線面體之間的聯(lián)系,,對學習圓柱和圓錐又起到省時省力的效果。很好地幫助學生建立知識之間的內(nèi)在聯(lián)系,,又培養(yǎng)了學生觀察,、類比、歸納,、概括能力,。

幾何中講“點”是有位置而無大小,無厚??;“線”有長短無粗細;“面”是有長寬而無薄厚,;……又說,,世界上沒有真正的點、線,、面,、體,這些東西是存在我們想象中,,這種玄學的講法,,怎能不使學生迷糊,、頭痛。如何把抽象的知識轉(zhuǎn)化成學生易懂易掌握的知識呢,?我思考了很久決定用學生常見的煙花,、流星、汽車雨刷,、旋轉(zhuǎn)門等現(xiàn)象,,這些是點線面體在生活中的原型,我充分利用多媒體把靜態(tài)的知識轉(zhuǎn)化成動態(tài)的知識,,使學生在動態(tài)中充分感悟點運動形成線,,線運動形成面,面運動形成體,,很好的發(fā)展了學生的空間觀念,。教學結(jié)果證明學生對點線面體之間的聯(lián)系掌握得很好。

教學開始從學生熟悉的奧運會開幕式的鏡頭入手,,很自然的把點線面體這些知識與生活聯(lián)系起來,,使學生深刻體會數(shù)學來自生活,就存在于身邊,。引入圓柱和圓錐的學習環(huán)節(jié),通過出示不同形狀的五盞燈,,引出小學階段所認識的所有立體圖形——長方體,、正方體、圓柱,、圓錐,、球。圓柱和圓錐區(qū)別于長,、正方體的特征是圓柱和圓錐的側(cè)面都是曲面,,而且底面是圓,在這個環(huán)節(jié)中,,學生整體感知了圓柱,、圓錐區(qū)別于長、正方體的特征,,同時在抽象出圓柱,、圓錐透視圖的過程中,學生對圓柱和圓錐的特征也有了初步感知,,這樣在大的立體圖形的背景下引出對圓柱和圓錐的研究,,能夠幫助學生建立起知識之間的內(nèi)在聯(lián)系,在抽象出立體圖形并區(qū)別它們的過程中,,已經(jīng)從整體上把握了圓柱和圓錐的特征,。

教學先認識圓柱的特征,,在學生對圓柱進行了充分的研究和認識之后,通過課件演示,,圓柱變成圓臺,,再由圓臺變成圓錐,在觀察課件演示的過程中,,學生已經(jīng)初步體會了圓錐和圓柱的區(qū)別,,即圓柱有2個底面,圓錐只有1個底面,;圓柱有無數(shù)條高,,而圓錐只有1條高。在研究圓錐特征的過程中,,學生對圓錐的底面,、側(cè)面、高的認識借鑒了對圓柱的研究過程,,通過觀察,、操作,不斷進行比較,、辨析,,最后歸納、概括出圓錐的特征,,既認識了圓錐的特征,,又進一步加深了學生對圓柱特征的認識,收到了事半功倍的效果,,因此這樣的教學真正實現(xiàn)了教學資源的最優(yōu)化,。

我根據(jù)不同需要,為學生提供更多的操作,、辨析,、比較的機會,而這種辨析和比較,,恰恰是提高學生學習質(zhì)量的關(guān)鍵,,因為在比較和辨析的過程中,學生對所學知識有了深層次的思考,、有了運用,,有了自己的判斷,不僅鞏固了本節(jié)課所學的知識,,幫助學生建立了空間觀念,,更重要的是培養(yǎng)了學生的觀察分析能力、類比能力和抽象概括能力,。

面的旋轉(zhuǎn)教學反思不足之處實用篇四

旋轉(zhuǎn)是生活中處處可見的現(xiàn)象,。在教學中,,教師不僅僅是使學生感知和初步認識平移和旋轉(zhuǎn),并滲透生活中處處有數(shù)學的思想,,還要使學生初步認識平移和旋轉(zhuǎn)的實質(zhì),,并會在方格紙上畫出簡單平移后的圖形。據(jù)此,,在教學中,,教師注意從學生的生活感知出發(fā)。通過大量的情景設(shè)置來引發(fā)學生的學習興趣,,通過積極的探究活動來激發(fā)學生的思維,,并注意到布置學生的課后實踐,引導學生把學習過的數(shù)學知識回歸到現(xiàn)實生活中去,,培養(yǎng)學生觀察和思考興趣,。

第一: 從“靜態(tài)”到“動態(tài)”,即由平面圖形經(jīng)過旋轉(zhuǎn)形成幾何體,。這不僅是對幾何體形成過程的學習,,同時讓學生體會面和體的關(guān)系也是發(fā)展空間觀念的重要途徑。

第二: 從“整體辨認”到“局部刻畫特征”,,鼓勵學生在以前研究長方體,、正方體特征的基礎(chǔ)上,研究圓柱和圓錐的特征,。同時,,對圓柱和圓錐的側(cè)面的認識,使學生對面的認識從平面過渡到曲面,,這是認識上的再一次上升。

第三:從觀察圓柱,、圓錐實物到認識它們畫在平面上的“圖”,。課上體現(xiàn)的是“點動成線”“線動成面”“面動成體”的過程,關(guān)注“點,、線,、面、體”之間的聯(lián)系,,引導學生整體把握知識,。

感受的基礎(chǔ)上,又設(shè)計了一個操作活動,,通過快速旋轉(zhuǎn)小旗,,引導學生結(jié)合空間想象體會立體圖形的形成過程,發(fā)展學生的空間觀念,。

教學時,,注意準備了必要的操作材料,,引導全體學生在觀察、操作,、想象的基礎(chǔ)上進行交流,,發(fā)展學生的空間觀念。同時還把點,、線,、面的運動過程制作成多媒體課件,在想象的基礎(chǔ)上,,讓學生進一步觀察,。另外,對于教材中通過旋轉(zhuǎn)形成的幾何體中出現(xiàn)的球和圓臺,,讓學生在“面旋轉(zhuǎn)成體”的過程中增加體驗,,鼓勵學生通過觀察、操作和想象認識這兩種幾何體,。課上注意把握好教學要求,,球只要求學生認識,不要求掌握特征,;圓臺不出名稱,,只要學生能連線,知道是由哪個平面圖形旋轉(zhuǎn)形成的就可以了,。

面的旋轉(zhuǎn)教學反思不足之處實用篇五

教學中,,我在深入鉆研教材的基礎(chǔ)上,嘗試根據(jù)自己學生的實際,,對教材進行剪裁加工,,以達到創(chuàng)造性使用教材的目的。如教學點,、線,、面、體之間的關(guān)系時,,對教材單一的點動成線,、線動成面和面動成體等內(nèi)容進行了加工,點動成線既有直的,,也有曲的,;線動成面,線既可以平移也可以旋轉(zhuǎn),;面動成體也是如此,。這一內(nèi)容的豐富使學生對點、線,、面,、體之間的關(guān)系時認識更清晰,,更全面。

在突出重點,,突破難點時,,我利用課件將靜態(tài)轉(zhuǎn)化為動態(tài),再現(xiàn)點動成線,、線動成面,、面動成體的生活情景以及由平面圖形經(jīng)過旋轉(zhuǎn)形成幾何體的過程。這不僅能幫助學生對點動成線,、線動成面,、面動成體和幾何體形成過程以及脫體成形這些抽象的純數(shù)學內(nèi)容形成鮮明的表象,同時讓學生深刻體會到了點,、線,、面、體間的關(guān)系,,很好的解決數(shù)學的抽象性和小學生思維的具體形象性之間的矛盾,,符合學生的認知規(guī)律。

為了讓學生充分理解面動成體和圓柱,、圓錐的特征,,在教學活動中僅靠說教和書面練習是不夠的,需要增加學生實踐活動的直接經(jīng)驗,。因此教學中我讓學生有充分的時間想一想,,轉(zhuǎn)一轉(zhuǎn)、摸一摸,、認一認,,進行觀察、想象,、動手操作,、直接感知,讓大家一起動腦,、動手,并分享集體的發(fā)現(xiàn),。力爭調(diào)動學生的眼,、耳、口,、手,、腦等多種感官,通過觀察,、想象,、舉例等活動,,把學生的思維充分調(diào)動了起來。

當然,,由于這部分內(nèi)容和傳統(tǒng)數(shù)學教材相比,,難度有所增加,這對學生和我都是一次全新的挑戰(zhàn),。為了能更好的駕馭教材,,課前我反復研究課本和教參,并且查閱了大量的資料,。再結(jié)合自己的體會形成了這樣一份教學思路,。教學思路充分調(diào)動學生的主觀能動性,始終圍繞著能由實物的形狀想象出幾何圖形,,有幾何圖形想象出實物的形狀,,并能描述運動過程中形成的幾何體。能應(yīng)用圖形形象的描述問題,,利用直觀來進行思考,。

面的旋轉(zhuǎn)教學反思不足之處實用篇六

一、從“靜態(tài) → 動態(tài)”,,即由平面圖形經(jīng)過旋轉(zhuǎn)形成幾何體,。這不僅是對幾何體形成過程的學習,同時讓學生體會面和體的關(guān)系也是發(fā)展空間觀念的重要途徑,。

二,、從“整體辨認 → 局部刻畫特征”,鼓勵學生在以前研究長方體,、正方體特征的基礎(chǔ)上,,研究圓柱和圓錐的特征。同時,,對圓柱和圓錐的側(cè)面的認識,,使學生對面的認識從平面過渡到曲面,這是認識上的再一次上升,。

三,、從觀察圓柱、圓錐實物到認識它們畫在平面上的“圖”,。體現(xiàn)的是“點動成線”“線動成面”“面動成體”的過程,,關(guān)注“點、線,、面,、體”之間的聯(lián)系,引導學生整體把握知識。

為了便于學生理解,,課堂上呈現(xiàn)了幾個生活中的具體情境,,讓學生進行觀察,激活學生的生活經(jīng)驗,,感受到“點,、線、面,、體”之間的聯(lián)系,。首先設(shè)計了一個利用自行車車輪轉(zhuǎn)動體會“點的運動形成線”的活動,即在自行車后輪輻條上系上彩帶,,觀察彩帶隨車輪轉(zhuǎn)動的情況,,發(fā)現(xiàn)彩帶轉(zhuǎn)動后形成了圓。然后又呈現(xiàn)了三幅情境圖,,讓學生結(jié)合這些生活現(xiàn)象體會“點,、線、面,、體”之間的聯(lián)系,,第一幅圖是“很多小的風箏在天空中連成一條線”,引導學生進一步感受“點的運動形成線”,;第二幅圖是“雨刷運動時的情況”,,引導學生感受“線的運動形成面”;第三幅圖是“轉(zhuǎn)門”,,引導學生感受“面的旋轉(zhuǎn)形成體”,。在結(jié)合具體情境感受的基礎(chǔ)上,又設(shè)計了一個操作活動,,通過快速旋轉(zhuǎn)小旗,,引導學生結(jié)合空間想象體會立體圖形的形成過程,發(fā)展學生的空間觀念,。

一,、創(chuàng)設(shè)生活情境,讓學生在活動中感悟數(shù)學,。

現(xiàn)代教育主張“數(shù)學源于現(xiàn)實,,寓于現(xiàn)實,用于現(xiàn)實”,。教學中,,我始終把學生置身于一個現(xiàn)實、有趣,、有挑戰(zhàn)性的生活情境中,從以生活中“旋轉(zhuǎn)的美”到課中“找一找”生活中圓柱、圓錐體的物品和練習題中包裝盒的設(shè)計,,都鼓動學生去觀察,,去發(fā)現(xiàn)生活中的數(shù)學問題,激活學生的生活經(jīng)驗,,體會數(shù)學知識在生活中的廣泛應(yīng)用,,豐富了學生對現(xiàn)實空間的認識,逐步形成了學習數(shù)學的良好情感與態(tài)度,。

二,、提供活動空間,讓學生在人人參與的操作中發(fā)展空間觀念,。

現(xiàn)代教學論認為:學生只有在親身經(jīng)歷或體驗一種學習過程時,,其聰明才智才能得以發(fā)揮出來。而且操作與思考,、想象相結(jié)合是學生認識圖形,,探索圖形特征,發(fā)展空間觀念的重要算途徑,。因此,,在課上,我為學生提供了多次探索,、操作的空間,。“旋轉(zhuǎn)游戲”使每一個學生快樂地參與其中,,使學生從抽象進入直觀,,又引發(fā)了學生深層次的思考、討論,,接下來在小組中通過看,、摸、滾,、剪,、量等探索活動中,,又一次享受到了無比的愉悅,,思維也漸漸走向深刻,,進一步加深了學生對幾何形體的認識,,形成良好的空間感知,。

三,、搭建展示舞臺,,讓學生在交流,、匯報中獲得成功,,建立自信,。

蘇霍姆林斯基曾說過:“把學習上取得成功的歡樂帶給兒童,,在兒童心里激起自豪和自尊,這是教育的第一信條,?!币虼耍谡n堂上,,我為學生提供了一個個成功的契機,,例如:通過小組內(nèi)的合作,探索,,談?wù)勀愕陌l(fā)現(xiàn),,你的收獲等等,使學生在匯報中互相補充,、互相啟發(fā),,感受到學習中的成就感。而且我重視對學生的尊重,、信任,、賞識和肯定,這給學生極大的信心,,促使他們永遠樂觀向上,。

四、借助信息技術(shù),,讓學生在直觀,、動感中形成表象。

《課標》指出:“數(shù)學課程的設(shè)計與實施應(yīng)重視運用現(xiàn)代信息技術(shù),?!北竟?jié)課,我利用現(xiàn)代信息技術(shù)生動,、逼真地將平面圖形經(jīng)過旋轉(zhuǎn),,形成立體圖形。這樣將靜態(tài)的知識結(jié)構(gòu)變?yōu)閯討B(tài)的探索對象,,引領(lǐng)學生們直觀,、高效的經(jīng)歷了知識發(fā)生、發(fā)展的過程,。

總之,,在課堂教學中,我把促進學生發(fā)展落實到具體的學習活動中,,讓學生在民主,、平等、和諧的課堂氣氛中,,主動參與學習,,在體驗中發(fā)現(xiàn)知識,、掌握知識、應(yīng)用知識,,從而形成空間觀念,,培養(yǎng)學生的合作精神和創(chuàng)新意識。

1.素材——注重現(xiàn)實性,。

數(shù)學學習的內(nèi)容應(yīng)當是現(xiàn)實、有趣,、富有挑戰(zhàn)性的,。本節(jié)課中,教師始終把學生置于趣味盎然的情景之中,,如:生活中“旋轉(zhuǎn)的美”,、“找一找”等活動。這樣激發(fā)了學生強烈的求知欲,,又使學生體會到數(shù)學來源于實踐,,又為實踐服務(wù)的思想,從而感受數(shù)學知識的現(xiàn)實性,。

2.問題——呈現(xiàn)開放性,。

教學中設(shè)計開放性的問題是培養(yǎng)學生創(chuàng)新思維的重要途徑。本節(jié)課中“旋轉(zhuǎn)游戲”,、小組內(nèi)的“操作活動”等問題具有一定的開放性,。課堂上學生非常執(zhí)著認真,大家暢所欲言,,各抒己見,,每個問題都得出不同的答案。通過這些問題的解決,,既可以開放了課堂空間,,又開放了學生思維,既鞏固了數(shù)學知識,,又提高了學生總結(jié)歸納的能力,。特別在探索、總結(jié)圓柱和圓錐的組成和特點的過程中,,學生的個性得到彰顯,,潛能得到開發(fā),他們所收獲的遠非數(shù)學知識,。

3.活動——凸顯主體性,。

《課程標準》指出:“學生是數(shù)學學習的主人”。因此,,課堂上教師要充分相信學生,,大膽放手,,最大限度的給學生自主學習的機會。本課中教師從學生的數(shù)學現(xiàn)實出發(fā),,通過同桌互助,、小組合作、全班交流等形式,,用觀察,、分析、猜想,、探索,、歸納等手段,幫助學生動手,、動腦做數(shù)學,,引導他們自主歸納出立體圖形的特點。同時,,注重教學過程中的評價,,使學生在探索的過程中得以最大限度地發(fā)揮自主性和潛在創(chuàng)造力,促使學生個性發(fā)展,。

總之,,在本節(jié)課中教師創(chuàng)造性地使用教材,使教學內(nèi)容更有趣味性,、豐富性,、現(xiàn)實性。同時建立自主學習的課堂機制,,加強學法指導,,促進了學生全面發(fā)展。

1,、素材——注重現(xiàn)實性

數(shù)學學習的內(nèi)容應(yīng)當是現(xiàn)實,、有趣、富有挑戰(zhàn)性的,。本節(jié)課中,,我始終把學生置于趣味的情境之中,如:生活中“旋轉(zhuǎn)的美”“找一找”等活動,,這樣激發(fā)了學生強烈的求知欲,,又使學生體會到數(shù)學源于實踐,感受到數(shù)學知識的現(xiàn)實性,。

2,、問題——呈現(xiàn)開放性

教學中設(shè)計開放性的問題是培養(yǎng)學生創(chuàng)新思維的重要途徑。本節(jié)課中“旋轉(zhuǎn)游戲”,、小組內(nèi)的“操作活動”等問題具有一定的開放性,。課堂上學生非常執(zhí)著,、認真、大家暢所欲言,,各抒已見,,每個問題都得出不同的答案。通過這些問題的解決,,既開放了課堂空間又開放了學生思維,;既鞏固了數(shù)學知識,又提高了學生總結(jié)歸納的能力,。特別在探索,、總結(jié)圓柱和圓錐的組成和特點的過程中,學生的個性得到彰顯,,潛能得到開發(fā),他們所收獲的遠非數(shù)學知識,。

3,、活動——凸顯主體性

課中,我大膽放手,,最大限度地給學生自主學習的機會,。我從學生的數(shù)學現(xiàn)實出發(fā),通過同桌互助,、小組合作,、全班交流等形式,用觀察,、分析,、猜想、探索,、歸納等手段,,幫助學生動手、動腦做數(shù)學,,引導他們自主歸納出立體圖形的特點,。

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內(nèi)不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服