在日常學(xué)習(xí),、工作或生活中,,大家總少不了接觸作文或者范文吧,,通過(guò)文章可以把我們那些零零散散的思想,,聚集在一塊。寫范文的時(shí)候需要注意什么呢,?有哪些格式需要注意呢,?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀,。
考研數(shù)學(xué)高數(shù)知識(shí)點(diǎn) 考研高數(shù)必考知識(shí)點(diǎn)篇一
1,、導(dǎo)數(shù)的定義;
2,、復(fù)合函數(shù),、隱函數(shù)和參數(shù)方程的求導(dǎo);
3,、方程的根的相關(guān)問(wèn)題,;
4、微分中值定理;
5,、導(dǎo)數(shù)在經(jīng)濟(jì)中的應(yīng)用(數(shù)三),。
求給定函數(shù)的導(dǎo)數(shù)與微分(包括高階導(dǎo)數(shù)),隱函數(shù)和由參數(shù)方程所確定的函數(shù)求導(dǎo),,特別是分段函數(shù)和帶有絕對(duì)值的函數(shù)可導(dǎo)性的討論,;
利用洛比達(dá)法則求不定式極限;
討論函數(shù)極值,,方程的根,,證明函數(shù)不等式;
利用羅爾定理,、拉格朗日中值定理,、柯西中值定理和泰勒中值定理證明有關(guān)命題,如“證明在開區(qū)間內(nèi)至少存在一點(diǎn)滿足……”,,此類問(wèn)題證明經(jīng)常需要構(gòu)造輔助函數(shù),;
幾何、物理,、經(jīng)濟(jì)等方面的最大值,、最小值應(yīng)用問(wèn)題,解這類問(wèn)題,,主要是確定目標(biāo)函數(shù)和約束條件,判定所討論區(qū)間,;
利用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,,求曲線漸近線。
考研數(shù)學(xué)高數(shù)知識(shí)點(diǎn) 考研高數(shù)必考知識(shí)點(diǎn)篇二
馬原24分,,毛特30分,,史綱14分,思修與法律基礎(chǔ)16分,,當(dāng)代世界經(jīng)濟(jì)與形勢(shì)與政策16分,,
完型10分,閱讀a40分,,閱讀b(即新題型)10分,,翻譯(英語(yǔ)一10分,英語(yǔ)二15分),,大作文(英語(yǔ)一20分,,英語(yǔ)二15分),小作文10分,,
理工類(數(shù)學(xué)一,、數(shù)學(xué)二) 、經(jīng)濟(jì)類(數(shù)學(xué)三)
數(shù)學(xué)一:高數(shù)56%,、線性代數(shù)22%,、概率統(tǒng)計(jì)22%
數(shù)學(xué)二:高數(shù)78%,、線性代數(shù)22%、不考概率統(tǒng)計(jì)
數(shù)學(xué)三:高數(shù)56%,、線性代數(shù)22%,、概率統(tǒng)計(jì)22%
一般情況下,工科類的為數(shù)學(xué)一和數(shù)學(xué)二,。專業(yè)課由于是自主命題,,試卷結(jié)構(gòu)詳見各招生單位公布的信息。
專業(yè)課:
由于是自主命題,,試卷結(jié)構(gòu)詳見各招生單位公布的信息,。
考研數(shù)學(xué)高數(shù)知識(shí)點(diǎn) 考研高數(shù)必考知識(shí)點(diǎn)篇三
1、多元函數(shù)的連續(xù)性,、偏導(dǎo)存在以及可微三者之間的關(guān)系,;
2、復(fù)合函數(shù)和隱函數(shù)求偏導(dǎo),,特別是抽象函數(shù)的偏導(dǎo),;
3、多元函數(shù)的極值和最值問(wèn)題,。
判定一個(gè)二元函數(shù)在一點(diǎn)是否連:續(xù),,偏導(dǎo)數(shù)是否存在、是否可微,,偏導(dǎo)數(shù)是否連續(xù),;
求多元函數(shù)(特別是含有抽象函數(shù))的一階、二階偏導(dǎo)數(shù),,求隱函數(shù)的一階,、二階偏導(dǎo)數(shù);
求二元,、三元函數(shù)的方向?qū)?shù)和梯度,;
求曲面的切平面和法線,求空間曲線的切線與法平面,,該類型題是多元函數(shù)的微分學(xué)與前面向量代數(shù)與空間解析幾何的綜合題,,應(yīng)結(jié)合起來(lái)復(fù)習(xí);
多元函數(shù)的極值或條件極值在幾何,、物理與經(jīng)濟(jì)上的應(yīng)用題,;求一個(gè)二元連續(xù)函數(shù)在一個(gè)有界平面區(qū)域上的最大值和最小值。這部分應(yīng)用題多要用到其他領(lǐng)域的知識(shí),,考生在復(fù)習(xí)時(shí)要引起注意,。
考研數(shù)學(xué)高數(shù)知識(shí)點(diǎn) 考研高數(shù)必考知識(shí)點(diǎn)篇四
1、不定積分、定積分和反常積分的基本運(yùn)算,;
2,、變上限積分的相關(guān)問(wèn)題;
3,、利用定積分求面積和旋轉(zhuǎn)體的體積,。
:
計(jì)算題:計(jì)算不定積分、定積分及廣義積分,;
關(guān)于變上限積分的題:如求導(dǎo),、求極限等;
有關(guān)積分中值定理和積分性質(zhì)的證明題,;
定積分應(yīng)用題:計(jì)算面積,,旋轉(zhuǎn)體體積,平面曲線弧長(zhǎng),,旋轉(zhuǎn)面面積,,壓力,引力,,變力作功等綜合性試題,。
考研數(shù)學(xué)高數(shù)知識(shí)點(diǎn) 考研高數(shù)必考知識(shí)點(diǎn)篇五
1、求極限,;
2,、無(wú)窮小階的比較問(wèn)題;
3,、間斷點(diǎn)類型的判斷,;
4、漸近線,。
求分段函數(shù)的復(fù)合函數(shù);
求極限或已知極限確定原式中的常數(shù),;
討論函數(shù)的連續(xù)性,,判斷間斷點(diǎn)的類型;
無(wú)窮小階的比較,;
討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù),,或確定方程在給定區(qū)間上有無(wú)實(shí)根。