欧美成人永久免费_欧美日本五月天_A级毛片免看在线_国产69无码,亚洲无线观看,精品人妻少妇无码视频,777无码专区,色大片免费网站大全,麻豆国产成人AV网,91视频网络,亚洲色无码自慰

當(dāng)前位置:網(wǎng)站首頁 >> 作文 >> 最新高二數(shù)學(xué)教案詳案(6篇)

最新高二數(shù)學(xué)教案詳案(6篇)

格式:DOC 上傳日期:2023-04-07 20:12:03
最新高二數(shù)學(xué)教案詳案(6篇)
時間:2023-04-07 20:12:03     小編:zxfb

作為一位杰出的教職工,總歸要編寫教案,,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案,。優(yōu)秀的教案都具備一些什么特點呢,?以下是小編收集整理的教案范文,,僅供參考,,希望能夠幫助到大家。

高二數(shù)學(xué)教案詳案篇一

一,、教學(xué)過程

1,、復(fù)習(xí)。

反函數(shù)的概念,、反函數(shù)求法,、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

求出函數(shù)y=x3的反函數(shù),。

2,、新課。

先讓學(xué)生用幾何畫板畫出y=x3的圖象,,學(xué)生紛紛動手,,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,,因為他們得到了如下的圖象(圖1):

教師在畫出上述圖象的學(xué)生中選定生1,,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng),。

生2:這是y=x3的反函數(shù)y=的圖象,。

師:對,但是怎么會得到這個圖象,,請大家討論,。

(學(xué)生展開討論,但找不出原因,。)

師:我們請生1再給大家演示一下,,大家?guī)退艺以颉?/p>

(生1將他的制作過程重新重復(fù)了一次。)

生3:問題出在他選擇的次序不對,。

師:哪個次序,?

生3:作點b前,選擇xa和xa3為b的坐標(biāo)時,,他先選擇xa3,,后選擇xa,作出來的點的坐標(biāo)為(xa3,,xa),,而不是(xa,xa3),。

師:是這樣嗎,?我們請生1再做一次,。

(這次生1在做的過程當(dāng)中,按xa,、xa3的次序選擇,,果然得到函數(shù)y=x3的圖象。)

師:看來問題確實是出在這個地方,,那么請同學(xué)再想想,,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢,?

(學(xué)生再次陷入思考,,一會兒有學(xué)生舉手。)

師:我們請生4來告訴大家,。

生4:因為他這樣做,,正好是將y=x3上的點b(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,,而y=x3的反函數(shù)也正好是將x與y交換。

師:完全正確,。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的,。關(guān)系,同學(xué)們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系,?

(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y(tǒng)=的圖象,?

生5:將y=x3的圖象上點的橫坐標(biāo)與縱坐標(biāo)交換,,可得到y(tǒng)=的圖象。

師:將橫坐標(biāo)與縱坐標(biāo)互換,?怎么換,?

(學(xué)生一時未能明白教師的意思,場面一下子冷了下來,,教師不得不將問題進一步明確,。)

師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,,是什么樣的對稱關(guān)系,?

(學(xué)生重新開始觀察這兩個函數(shù)的圖象,一會兒有學(xué)生舉手,。)

生6:我發(fā)現(xiàn)這兩個圖象應(yīng)是關(guān)于某條直線對稱,。

師:能說說是關(guān)于哪條直線對稱嗎?

生6:我還沒找出來,。

(接下來,,教師引導(dǎo)學(xué)生利用幾何畫板找出兩函數(shù)圖象的對稱軸,,畫出如下圖形,如圖2所示:)

學(xué)生通過移動點a(點b,、c隨之移動)后發(fā)現(xiàn),,bc的中點m在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,,在追蹤m點后,,發(fā)現(xiàn)中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱,。

師:這個結(jié)論有一般性嗎,?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎,?請同學(xué)們用其他函數(shù)來試一試,。

(學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱,。)

還是有部分學(xué)生舉手,,因為他們畫出了如下圖象(圖3):

教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學(xué)生后,,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈r)沒有反函數(shù),,②也不是函數(shù)的圖象。

最后教師與學(xué)生一起總結(jié):

點(x,,y)與點(y,,x)關(guān)于直線y=x對稱;

函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱,。

二,、反思與點評

1、在開學(xué)初,,我就教學(xué)幾何畫板4,。0的用法,在教函數(shù)圖象畫法的過程當(dāng)中,,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點時,,不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計起源于此,。雖然幾何畫板4,。04中,能直接根據(jù)函數(shù)解析式畫出圖象,,但這樣反而不能揭示圖象對稱的本質(zhì),,所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4,。0進行教學(xué),。

2,、荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過程當(dāng)中,,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,,因此我們既要借助直觀,,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學(xué)生正確理解比較抽象的概念,。

計算機作為一種現(xiàn)代信息技術(shù)工具,,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象,、圖形變換等方面,,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,,但不能達到更好地理解抽象概念,,促進學(xué)生思維的目的的話,這樣的教學(xué)中,,計算機最多只是一種普通的直觀工具而已,。

在本節(jié)課的教學(xué)中,計算機更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,,對反函數(shù)的存在性,、反函數(shù)的求法等方面也有了更深刻的理解。

當(dāng)前計算機用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,,更多的是把計算機作為一種直觀工具,,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計算機作為學(xué)生的認(rèn)知工具,,讓學(xué)生通過計算機發(fā)現(xiàn)探索,,甚至利用計算機來做數(shù)學(xué),在此過程當(dāng)中更好地理解數(shù)學(xué)概念,,促進數(shù)學(xué)思維,,發(fā)展數(shù)學(xué)創(chuàng)新能力。

3,、在引出兩個函數(shù)圖象對稱關(guān)系的時候,,問題設(shè)計不甚妥當(dāng),本來是想要學(xué)生回答兩個函數(shù)圖象對稱的關(guān)系,,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,,以致將學(xué)生引入歧途,。這樣的問題在今后的教學(xué)中是必須力求避免的。

高二數(shù)學(xué)教案詳案篇二

1,、進一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì),;

2、在對一個數(shù)列的探究過程中,,提高提出問題,、分析問題和解決問題的能力;

3,、進一步提高問題探究意識,、知識應(yīng)用意識和同伴合作意識。

問題的提出與解決

如何進行問題的探究

啟發(fā)探究式

問題:已知{an}是首項為1,,公比為的無窮等比數(shù)列,。對于數(shù)列{an},提出你的問題,,并進行研究,,你能得到一些什么樣的結(jié)論?

1,、數(shù)列{an}是一個等比數(shù)列,,可以從等比數(shù)列角度來進行研究;

2,、研究所給數(shù)列的項之間的關(guān)系,;

3、研究所給數(shù)列的子數(shù)列,;

4,、研究所給數(shù)列能構(gòu)造的新數(shù)列;

5,、數(shù)列是一種特殊的函數(shù),,可以從函數(shù)性質(zhì)角度來進行研究;

6,、研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù),、復(fù)數(shù)、圖形,、實際意義等),。

針對學(xué)生的研究情況,對所提問題進行歸類,,選擇部分類型問題共同進行研究,、分析與解決。

1,、研究一個數(shù)列可以從哪些方面提出問題并進行研究,?

2,、你最喜歡哪位同學(xué)的研究?為什么,?

高二數(shù)學(xué)教案詳案篇三

掌握向量的概念,、坐標(biāo)表示、運算性質(zhì),,做到融會貫通,,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題,。

向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用,。

(一)主要知識:

1、掌握向量的概念,、坐標(biāo)表示,、運算性質(zhì),做到融會貫通,,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何,、解析幾何等的問題。

(二)例題分析:

1,、進一步熟練有關(guān)向量的運算和證明,;能運用解三角形的知識解決有關(guān)應(yīng)用問題,

2,、滲透數(shù)學(xué)建模的思想,,切實培養(yǎng)分析和解決問題的能力。

高二數(shù)學(xué)教案詳案篇四

【自主梳理】

1.對數(shù):

(1) 一般地,,如果 ,,那么實數(shù) 叫做________________,記為________,,其中 叫做對數(shù)的_______, 叫做________.

(2)以10為底的對數(shù)記為________,,以 為底的對數(shù)記為_______.

(3) ,, .

2.對數(shù)的運算性質(zhì):

(1)如果 ,那么 ,,

.

(2)對數(shù)的換底公式: .

3.對數(shù)函數(shù):

一般地,,我們把函數(shù)____________叫做對數(shù)函數(shù),其中 是自變量,,函數(shù)的定義域是______.

4.對數(shù)函數(shù)的圖像與性質(zhì):

a1 0

圖象性

質(zhì) 定義域:___________

值域:_____________

過點(1,,0),即當(dāng)x=1時,,y=0

x(0,,1)時_________

x(1,,+)時________ x(0,,1)時_________

x(1,,+)時________

在___________上是增函數(shù) 在__________上是減函數(shù)

【自我檢測】

1. 的定義域為_________.

2.化簡: .

3.不等式 的解集為________________.

4.利用對數(shù)的換底公式計算: .

5.函數(shù) 的奇偶性是____________.

6.對于任意的 ,若函數(shù) ,,則 與 的大小關(guān)系是___________________________.

【例1】填空題:

(1) .

(2)比較 與 的大小為___________.

(3)如果函數(shù) ,那么 的 最大值是_____________.

(4)函數(shù) 的奇偶性是___________.

【例2】求函數(shù) 的定義域和值域,。

【例3】已知函數(shù) 滿足 .

(1)求 的解析式,;

(2)判斷 的奇偶性,;

(3)解不等式 .

課堂小結(jié)

1. .略

2.函數(shù) 的定義域為_______________.

3.函數(shù) 的值域是_____________.

4.若 ,,則 的取值范圍是_____________.

5.設(shè) 則 的大小關(guān)系是_____________.

6.設(shè)函數(shù) ,,若 ,,則 的取值范圍為_________________.

7.當(dāng) 時,,不等式 恒成立,,則 的取值范圍為______________.

8.函數(shù) 在區(qū)間 上的值域為 ,,則 的最小值為____________.

9.已知 .

(1)求 的定義域,;

(2)判斷 的奇偶性并予以證明,;

(3)求使 的 的取值范圍,。

10.對于函數(shù) ,,回答下列問題:

(1)若 的定義域為 ,,求實數(shù) 的取值范圍,;

(2)若 的值域為 ,,求實數(shù) 的取值范圍,;

(3)若函數(shù) 在 內(nèi)有意義,求實數(shù) 的取值范圍,。

四,、糾錯分析

錯題卡 題 號 錯 題 原 因 分 析

【自主梳理】

1.對數(shù)

(1)以 為底的 的對數(shù),, ,,底數(shù),,真數(shù),。

(2) ,, .

(3)0,,1.

2.對數(shù)的運算性質(zhì)

(1) ,, , .

(2) .

3.對數(shù)函數(shù)

,, .

4.對數(shù)函數(shù)的圖像與性質(zhì)

a1 0

圖象性質(zhì) 定義域:(0,,+)

值域:r

過點(1,,0),,即當(dāng)x=1時,,y=0

x(0,,1)時y0

x(1,,+)時y0 x(0,,1)時y0

x(1,,+)時y0

在(0,,+)上是增函數(shù) 在(0,,+)上是減函數(shù)

1. 2. 3.

4. 5.奇函數(shù) 6. .

【例1】填空題:

(1)3.

(2) .

(3)0.

(4)奇函數(shù),。

【例2】解:由 得 .所以函數(shù) 的定義域是(0,,1).

因為 ,,所以,,當(dāng) 時,, ,,函數(shù) 的值域為 ;當(dāng) 時,, ,,函數(shù) 的值域為 .

【例3】解:(1) ,,所以 .

(2)定義域(-3,,3)關(guān)于原點對稱,所以

,,所以 為奇函數(shù)。

(3) ,,所以當(dāng) 時,, 解得

當(dāng) 時,, 解得 .

高二數(shù)學(xué)教案詳案篇五

1,、預(yù)習(xí)教材,,問題導(dǎo)入

根據(jù)以下提綱,,預(yù)習(xí)教材p2~p5,,回答下列問題,。

(1)對于一般的二元一次方程組a1x+b1y=c1,,①a2x+b2y=c2,②其中a1b2-a2b1≠0,,如何寫出它的求解步驟,?

提示:分五步完成:

第一步,,①×b2-②×b1,,得(a1b2-a2b1)x=b2c1-b1c2,,③

第二步,,解③,,得x=b2c1-b1c2a1b2-a2b1.

第三步,,②×a1-①×a2,,得(a1b2-a2b1)y=a1c2-a2c1,,④

第四步,解④,,得y=a1c2-a2c1a1b2-a2b1.

第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,,y=a1c2-a2c1a1b2-a2b1.

(2)在數(shù)學(xué)中算法通常指什么,?

提示:在數(shù)學(xué)中,,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟,。

2,、歸納總結(jié),,核心必記

(1)算法的概念

12世紀(jì)的算法指的是用阿拉伯?dāng)?shù)字進行算術(shù)運算的過程續(xù)表

數(shù)學(xué)中的算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟

現(xiàn)代算法通常可以編成計算機程序,,讓計算機執(zhí)行并解決問題

(2)設(shè)計算法的目的

計算機解決任何問題都要依賴于算法。只有將解決問題的過程分解為若干個明確的步驟,,即算法,并用計算機能夠接受的“語言”準(zhǔn)確地描述出來,,計算機才能夠解決問題,。

(1)求解某一個問題的算法是否是的?

提示:不是,。

(2)任何問題都可以設(shè)計算法解決嗎?

提示:不一定,。

高二數(shù)學(xué)教案詳案篇六

1、知識與技能:

(1)推廣角的概念,、引入大于角和負角,;

(2)理解并掌握正角,、負角、零角的定義,;

(3)理解任意角以及象限角的概念,;

(4)掌握所有與角終邊相同的角(包括角)的表示方法,;

(5)樹立運動變化觀點,,深刻理解推廣后的角的概念,;

(6)揭示知識背景,,引發(fā)學(xué)生學(xué)習(xí)興趣,;

(7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析,、探求的學(xué)習(xí)態(tài)度,,強化學(xué)生的參與意識,。

2,、過程與方法:

通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,,角有大于角,、零角和旋轉(zhuǎn)方向不同所形成的角等,,引入正角,、負角和零角的概念,;角的概念得到推廣以后,,將角放入平面直角坐標(biāo)系,,引入象限角,、非象限角的概念及象限角的判定方法,;列出幾個終邊相同的角,,畫出終邊所在的位置,,找出它們的關(guān)系,,探索具有相同終邊的角的表示,;講解例題,,總結(jié)方法,,鞏固練習(xí),。

3,、情態(tài)與價值:

通過本節(jié)的學(xué)習(xí),,使同學(xué)們對角的概念有了一個新的認(rèn)識,,即有正角、負角和零角之分。角的概念推廣以后,,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,,學(xué)會運用運動變化的觀點認(rèn)識事物,。

重點:理解正角,、負角和零角的定義,,掌握終邊相同角的表示法,。

難點:終邊相同的角的表示,。

投影儀等,。

【創(chuàng)設(shè)情境】

思考:你的手表慢了5分鐘,,你是怎樣將它校準(zhǔn)的?假如你的手表快了1,。25小時,你應(yīng)當(dāng)如何將它校準(zhǔn),?當(dāng)時間校準(zhǔn)以后,,分針轉(zhuǎn)了多少度,?

我們發(fā)現(xiàn),,校正過程中分針需要正向或反向旋轉(zhuǎn),,有時轉(zhuǎn)不到一周,,有時轉(zhuǎn)一周以上,,這就是說角已不僅僅局限于之間,,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角,。

【探究新知】

1,、初中時,我們已學(xué)習(xí)了角的概念,,它是如何定義的呢?

[展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形,。如圖1.1—1,,一條射線由原來的位置,,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置ob,就形成角a,。旋轉(zhuǎn)開始時的射線叫做角的始邊,,ob叫終邊,,射線的端點o叫做叫a的頂點,。

2,、如上述情境中所說的校準(zhǔn)時鐘問題以及在體操比賽中我們經(jīng)常聽到這樣的術(shù)語:“轉(zhuǎn)體”(即轉(zhuǎn)體2周),,“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,,都是遇到大于的角以及按不同方向旋轉(zhuǎn)而成的角。同學(xué)們思考一下:能否再舉出幾個現(xiàn)實生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,,這些說明了什么問題?又該如何區(qū)分和表示這些角呢,?

[展示課件]如自行車車輪,、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,,這些都說明了我們研究推廣角概念的必要性,。為了區(qū)別起見,,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),,按順時針方向旋轉(zhuǎn)所形成的角叫負角(negativeangle),。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle),。

3、學(xué)習(xí)小結(jié):

(1)你知道角是如何推廣的嗎,?

(2)象限角是如何定義的呢,?

(3)你熟練掌握具有相同終邊角的表示了嗎,?會寫終邊落在x軸,、y軸,、直線上的角的集合,。

課后習(xí)題

作業(yè):

1,、習(xí)題1.1a組第1,,2,,3題,。

2,。多舉出一些日常生活中的“大于的角和負角”的例子,,熟練掌握他們的表示,,

進一步理解具有相同終邊的角的特點,。

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
你可能感興趣的文章
a.付費復(fù)制
付費獲得該文章復(fù)制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復(fù)制
付費后30天內(nèi)不限量復(fù)制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服