無(wú)論是身處學(xué)校還是步入社會(huì),,大家都嘗試過(guò)寫作吧,借助寫作也可以提高我們的語(yǔ)言組織能力,。那么我們?cè)撊绾螌懸黄^為完美的范文呢,?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,,大家一起來(lái)看看吧,。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇一
我說(shuō)課的課題是《任意角的三角函數(shù)》,內(nèi)容取自人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》④(必修)第1,、2,、1節(jié)。
本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:三角函數(shù)是描述周期運(yùn)動(dòng)現(xiàn)象的重要的數(shù)學(xué)模型,,有非常廣泛的應(yīng)用,。三角函數(shù)的定義是在初中對(duì)銳角三角函數(shù)的定義以及剛學(xué)過(guò)的“角的概念的推廣”的基礎(chǔ)上討論和研究的。三角函數(shù)的定義是本章最基本的概念,,對(duì)三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要,,是其他所有知識(shí)的出發(fā)點(diǎn)。緊緊扣住三角函數(shù)定義這個(gè)寶貴的源泉,,可以自然地導(dǎo)出本章的具體內(nèi)容:三角函數(shù)線,、定義域、符號(hào)判斷、值域,、同角三角函數(shù)關(guān)系,、多組誘導(dǎo)公式、多組變換公式,、圖象和性質(zhì),。三角函數(shù)的定義在教材中起著承前啟后的作用,,一方面,,通過(guò)這部分內(nèi)容的學(xué)習(xí),可以幫助學(xué)生更加深入理解函數(shù)這一基本概念,,另一方面它又為平面向量,、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備。三角函數(shù)知識(shí)還是物理學(xué),、高等數(shù)學(xué),、測(cè)量學(xué)、天文學(xué)的重要基礎(chǔ),。
三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),,由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點(diǎn)就是定義本身,。
數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),,更重要的是傳授給學(xué)生數(shù)學(xué)思想,、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生展示嘗試類比,、數(shù)形結(jié)合等數(shù)學(xué)思想方法,。
教學(xué)重點(diǎn):任意角的三角函數(shù)的定義,三角函數(shù)的符號(hào)規(guī)律,。
教學(xué)難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過(guò)程,。
教學(xué)關(guān)鍵:如何想到建立直角坐標(biāo)系,;六個(gè)比值的確定性(α確定,,比值也隨之確定)與依賴性(比值隨著α的變化而變化)。
學(xué)生已經(jīng)掌握的內(nèi)容及學(xué)生學(xué)習(xí)能力
1,、學(xué)生在初中時(shí)已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見(jiàn)的知識(shí)和求法,。
2,、學(xué)生的運(yùn)算能力較差,。
3,、部分同學(xué)對(duì)數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性,。
4,、在探究問(wèn)題的能力,,合作交流的意識(shí)等方面發(fā)展不夠均衡,,必須在老師一定的指導(dǎo)下才能進(jìn)行,。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定如下教學(xué)目標(biāo):
1,、基礎(chǔ)知識(shí)目標(biāo):使學(xué)生正確理解任意角的正弦,、余弦,、正切的定義,了解余切,、正割、余割的定義,;
2,、能力訓(xùn)練目標(biāo):通過(guò)學(xué)生積極參與知識(shí)的“發(fā)現(xiàn)”與“形成”的過(guò)程,,培養(yǎng)合情猜測(cè)的能力,。
3,、情感目標(biāo):通過(guò)學(xué)習(xí),,滲透數(shù)形結(jié)合和類比的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的思維習(xí)慣,。
下面,,為了講清重點(diǎn)、難點(diǎn),,使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),,我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>
教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受,、記憶,、模仿和練習(xí),,而且要自主探索、合作交流,、師生互動(dòng),,教師發(fā)揮組織者、引導(dǎo)者,、合作者的作用,,引導(dǎo)學(xué)生主體參與、揭示本質(zhì),、經(jīng)歷過(guò)程,。
根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,,本節(jié)課采用“啟發(fā)探索,、講練結(jié)合”的方法組織教學(xué)教法,在課堂結(jié)構(gòu)上,,設(shè)計(jì)了①創(chuàng)設(shè)情境——揭示課題②推廣認(rèn)知——形成概念③鞏固新知——探求規(guī)律④總結(jié)反思——提高認(rèn)識(shí)⑤任務(wù)后延——自主探究五個(gè)層次的學(xué)法,,它們環(huán)環(huán)相扣,層層深入,,從而順利完成教學(xué)目標(biāo),。接下來(lái),我再具體談一談這堂課的教學(xué)過(guò)程:
總體來(lái)說(shuō),,由舊及新,,由易及難,逐步加強(qiáng),,逐步推進(jìn),,給定定義后通過(guò)應(yīng)用定義又逐步發(fā)現(xiàn)新知識(shí),拓展,、完善定義,、
先由初中的直角三角形中銳角三角函數(shù)的定義,過(guò)度到直角坐標(biāo)系中銳角三角函數(shù)的定義,,再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義,。
(一)創(chuàng)設(shè)情境——揭示課題
問(wèn)題1:在初中我們學(xué)習(xí)了銳角三角函數(shù),那么銳角三角函數(shù)是如何定義的,?
【設(shè)計(jì)意圖】學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過(guò)程(類似于從有理數(shù)到實(shí)數(shù)的擴(kuò)展),。溫故知新,,要讓學(xué)生體會(huì)知識(shí)的產(chǎn)生、發(fā)展過(guò)程,,就要從源頭上開(kāi)始,,從學(xué)生現(xiàn)有認(rèn)知狀況開(kāi)始,,對(duì)銳角三角函數(shù)的復(fù)習(xí)就必不可少。
問(wèn)題2:角的概念推廣之后,,這樣的三角函數(shù)定義還適用嗎,?
問(wèn)題3:若將銳角放入直角坐標(biāo)系中,你能用角的終邊上的點(diǎn)的坐標(biāo)來(lái)表示銳角三角函數(shù)嗎,?
留時(shí)間讓學(xué)生獨(dú)立思考或自由討論,,教師參與討論或巡回對(duì)學(xué)困生作啟發(fā)引導(dǎo)。
能表示嗎,?怎樣表示,?針對(duì)剛才的問(wèn)題點(diǎn)名讓學(xué)生回答。用角的對(duì)邊,、鄰邊,、斜邊比值的說(shuō)法顯然是受到阻礙了,由于前面已經(jīng)以直角坐標(biāo)系為工具來(lái)研究任意角了,,學(xué)生一般會(huì)想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來(lái)研究任意角的三角函數(shù),。
【設(shè)計(jì)意圖】
從學(xué)生現(xiàn)有知識(shí)水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問(wèn)題情景,,讓學(xué)生產(chǎn)生認(rèn)知沖突,,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索,、合作交流的“再創(chuàng)造”征程,。
教師對(duì)學(xué)生回答情況進(jìn)行點(diǎn)評(píng)后布置任務(wù)情景:請(qǐng)同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!
師生共做(學(xué)生口述,,教師板書(shū)圖形和比值),。
問(wèn)題4:對(duì)于確定的角,這三個(gè)比值是否與p在
的終邊上的位置有關(guān),?為什么,?
先讓學(xué)生想象思考,作出主觀判斷,,再引導(dǎo)學(xué)生觀察右圖,,
聯(lián)系相似三角形知識(shí),探索發(fā)現(xiàn):對(duì)于銳角α的每一個(gè)確定值,,
六個(gè)比值都是確定的,不會(huì)隨p在終邊上的移動(dòng)而變化,。
得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時(shí),,六個(gè)比值隨α的變化而變化;但對(duì)于銳角α的每一個(gè)確定值,,六個(gè)比值都是確定的,,不會(huì)隨p在終邊上的移動(dòng)而變化,、所以,六個(gè)比值分別是以角α為自變量,、以比值為函數(shù)值的函數(shù),。
(二)推廣認(rèn)知——形成概念
將銳角的比值情形推廣到任意角α后,水到渠成,,師生共同進(jìn)行探索和推廣出:任意角的三角函數(shù)定義,。同時(shí)教師強(qiáng)調(diào):由于弧度制使角和實(shí)數(shù)建立了一一對(duì)應(yīng)關(guān)系,所以三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù),,對(duì)數(shù)學(xué)學(xué)習(xí)能力較好的同學(xué)起到了很好的指導(dǎo)作用,。
教師指出:sinα、cosα,、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,,cotα、cscα,、secα的定義域不要求記憶,。
(關(guān)于值域,到后面再學(xué)習(xí)),。
【設(shè)計(jì)意圖】定義域是函數(shù)三要素之一,,研究函數(shù)必須明確定義域、指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,,有利于在理解的基礎(chǔ)上記住它,、應(yīng)用它,也增進(jìn)對(duì)三角函數(shù)概念的掌握,。
(三)鞏固新知——探求規(guī)律
為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,,進(jìn)而達(dá)到鞏固提高的效果,
例1,、已知角的終邊過(guò)點(diǎn),,求的六個(gè)三角函數(shù)值
要求:讀完題目,思考:計(jì)算什么,?需要準(zhǔn)備什么,?閉目心算,對(duì)照板書(shū),,模仿書(shū)面表達(dá)格式,。
鞏固定義之后,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,,以鞏固和加深對(duì)三角函數(shù)概念的理解,,通過(guò)課堂積極主動(dòng)的練習(xí)活動(dòng),培養(yǎng)學(xué)生分析解決問(wèn)題的能力。
例2,、求的正弦,、余弦和正切值。
分析:終邊上有無(wú)窮多個(gè)點(diǎn),,根據(jù)三角函數(shù)的定義,,只要知道終邊上任意一個(gè)點(diǎn)的坐標(biāo),就可以計(jì)算這個(gè)角的三角函數(shù)值(或判斷其無(wú)意義)
師生探索:緊扣三角函數(shù)定義求解,,首先要在終邊上取定一點(diǎn),。終邊在哪兒呢?取定哪一點(diǎn)呢,?任意點(diǎn),、還是特殊點(diǎn)?要靈活,,只要能夠算出三角函數(shù)值,,都可以。
取特殊點(diǎn)能使計(jì)算更簡(jiǎn)明,。
等待學(xué)生基本理解和掌握三角函數(shù)定義后,,觀察、分析初,、高中所計(jì)算的函數(shù)值有何變化,,讓學(xué)生意識(shí)到三角函數(shù)值的正負(fù)與角所在象限有關(guān),然后引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來(lái)分析,,從而導(dǎo)出三角函數(shù)值的正負(fù)與角所在象限的關(guān)系,進(jìn)而由教師總結(jié)符號(hào)記憶方法,,便于學(xué)生記憶,。
【設(shè)計(jì)意圖】判斷三角函數(shù)值的正負(fù)符號(hào),是本章教材的一項(xiàng)重要的知識(shí),、技能要求,、要引導(dǎo)學(xué)生抓住定義,、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號(hào),,并總結(jié)出形象的“才”字符號(hào)法則,,這也是理解和記憶的關(guān)鍵。
(四)總結(jié)反思——提高認(rèn)識(shí)
由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容:⑴任意角的三角函數(shù)的定義及其定義域;⑵三角函數(shù)的符號(hào)規(guī)律,。讓學(xué)生通過(guò)知識(shí)性內(nèi)容的小結(jié),把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),;通過(guò)數(shù)學(xué)思想方法的小結(jié),,使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo),。
(五)任務(wù)后延——自主探究
學(xué)生經(jīng)過(guò)以上四個(gè)環(huán)節(jié)的學(xué)習(xí),,已經(jīng)初步掌握了任意角的三角函數(shù)的定義及三角函數(shù)的符號(hào)規(guī)律,有待進(jìn)一步提高認(rèn)知水平,,因此我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的作業(yè),,其中思考題的設(shè)計(jì)思想是:綜合練習(xí)鞏固提高,更為下節(jié)的學(xué)習(xí)內(nèi)容打下基礎(chǔ),,同時(shí)留給學(xué)生課后自主探究,,這樣既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高,,從而達(dá)到拔尖和“減負(fù)”的目的,,以有利于全體學(xué)生的發(fā)展。
cotα,、cscα,、secα的定義寫在sinα、cosα,、tanα的左下方,,突出本節(jié)重要內(nèi)容的主體地位。
結(jié)束:以上,,我僅從說(shuō)教材,,說(shuō)學(xué)情,說(shuō)教法,,說(shuō)學(xué)法,,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,,闡明了“為什么這樣教”,。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇二
1,、教材的地位與作用:本節(jié)課要講的是正,、余弦函數(shù)的性質(zhì),它是歷年高考的重點(diǎn)內(nèi)容之一,,在高考中常以選擇題、填空題的形式出現(xiàn),。有時(shí)與其它三角變換、函數(shù)的一般性質(zhì)綜合??疾殪`活,,常有創(chuàng)新性,。這就要求我們注意運(yùn)用三角函數(shù)的性質(zhì)培養(yǎng)學(xué)生善于運(yùn)用三角函數(shù)的性質(zhì)解決問(wèn)題。因此,,學(xué)好這節(jié)課不僅可以為我們今后學(xué)習(xí)正切,、余切函數(shù)的性質(zhì)打下基礎(chǔ),,還可以進(jìn)一步提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力,,它對(duì)知識(shí)起到了承上啟下的作用。
2,、教學(xué)目標(biāo)的確定:根據(jù)教參及教學(xué)大綱的要求,,依據(jù)教學(xué)目的以及學(xué)生的實(shí)際情況,制定如下的教學(xué)目標(biāo):
(1)知識(shí)目標(biāo):正,、余弦函數(shù)的性質(zhì)及應(yīng)用(定義域,、值域、最大,、最小值,、奇偶性、單調(diào)性)
(2)能力目標(biāo):
a:掌握正,、余弦函數(shù)的性質(zhì);
b:靈活利用正,、余弦函數(shù)的性質(zhì)
(3)德育目標(biāo):
a:滲透數(shù)形結(jié)合的思想
b:培養(yǎng)聯(lián)合變化的觀點(diǎn)
c:提高數(shù)學(xué)素質(zhì)
3、教學(xué)重點(diǎn)和難點(diǎn)的確定及依據(jù);
由于正,、余弦函數(shù)的主要性質(zhì)在本節(jié)中有著重要的地位,。因此,成為本節(jié)課的重點(diǎn),,在教學(xué)中,,單調(diào)性、奇偶性和周期性是學(xué)生第一次接觸的三個(gè)概念,,而函數(shù)的單調(diào)性,、奇偶性以及周期函數(shù),周期,,最小正周期的意義是本節(jié)教學(xué)中學(xué)生第一次接觸的內(nèi)容,。這在學(xué)生的基礎(chǔ)上理解有一定的難度。因此成為本節(jié)課的難點(diǎn),。那么克服本節(jié)課的難點(diǎn)的關(guān)鍵在于復(fù)習(xí)好正,、余弦函數(shù)圖象的意義,充分利用圖形講清正,、余弦函數(shù)的特點(diǎn),,梳理好講解順序,使學(xué)生通過(guò)適當(dāng)?shù)木毩?xí)正確理解概念,、圖象,、特性、實(shí)現(xiàn)教學(xué)目標(biāo)和進(jìn)一步提高學(xué)生的學(xué)習(xí)探索能力,,充分發(fā)揮學(xué)生的主體作用,。
正、余弦函數(shù)的性質(zhì),,其中定義域,、值域,、最大值、最小值,,學(xué)生以前已接觸過(guò),,所以只需簡(jiǎn)單提示。但是單調(diào)性,,奇偶性,,周期性是學(xué)生第一次接觸到的,考慮到學(xué)生的基礎(chǔ)參差不齊,,接受能力不同,,因此在教學(xué)中要顧全局,耐心講解,,并通過(guò)適當(dāng)?shù)慕叹邌l(fā)調(diào)動(dòng)學(xué)生的主觀能動(dòng)性,。
1、教學(xué)方法:?jiǎn)l(fā)誘導(dǎo)式教學(xué)方法,,為增強(qiáng)圖象的形象直觀性,,增大教學(xué)內(nèi)容,提高效率,。我利用計(jì)算機(jī)軟件,,在此基礎(chǔ)上,學(xué)生運(yùn)用觀察法,、發(fā)現(xiàn)法、學(xué)習(xí)法,、歸納法以及練習(xí)法進(jìn)行學(xué)習(xí),,在教學(xué)過(guò)程中,首先我以習(xí)提問(wèn)形式引入課題,,意義使學(xué)生利用類比思想,,認(rèn)識(shí)到研究三角函數(shù)的方向所在,減少盲目性,。為了有利于學(xué)生正確了解正,、余弦圖形的性質(zhì),我又指導(dǎo)了學(xué)生復(fù)習(xí)正,、余弦函數(shù)的圖象,。再?gòu)慕榻B圖象的特點(diǎn)讓學(xué)生觀察、發(fā)現(xiàn),、歸納函數(shù)的性質(zhì),。同時(shí)結(jié)合不同例子鞏固所學(xué)的知識(shí),訓(xùn)練學(xué)生的知識(shí)應(yīng)用能力,。軟件輔助教的充分利用使得教學(xué)生動(dòng)而有條理,,使學(xué)生認(rèn)識(shí)到數(shù)歸思想,、數(shù)形結(jié)合在學(xué)習(xí)知識(shí)中的作用,。
2,、教學(xué)手段:根據(jù)本節(jié)課的特點(diǎn),要在正,、余弦函數(shù)的圖象的基礎(chǔ)上操作性質(zhì),,所以有條件的話不防可用動(dòng)畫(huà)的形式表現(xiàn),給學(xué)生一種直觀形象,,不僅激發(fā)了學(xué)生的創(chuàng)造性思維能力,,更起到了事半功倍的效果。
1,、復(fù)習(xí)導(dǎo)入:
通過(guò)復(fù)習(xí)已學(xué)過(guò)的正,、余弦函數(shù)的圖象,不妨叫學(xué)生自己作圖,,這樣不僅復(fù)習(xí)了上節(jié)課的五點(diǎn)作圖法,,還可以引出新課,正,、余弦函數(shù)的性質(zhì)
2,、新課
a:打出多媒體課件,不妨叫學(xué)生自己觀察正,、余弦函數(shù)的圖象,,定義域和值域,最大值,,最小值,,學(xué)生應(yīng)該都能觀察出來(lái),只須稍微強(qiáng)調(diào)一下,。
b:周期函數(shù)的定義:可有誘導(dǎo)公式sin(x+2kn)=sinx
得出函數(shù)值是按一定的規(guī)律重復(fù)取的,,給出定義,講解定義時(shí),,要特別強(qiáng)調(diào)“作零常數(shù)t”,,及“對(duì)于定義域的每一值,都要有f(x+t)=f(x)成立,,也就是說(shuō),,如果在定義域內(nèi)的每一個(gè)值使得f(x+t)=f(x)成立。非零常數(shù)t就是周期了,,不妨舉一個(gè)例子,,是否正弦函數(shù)的周期,sin(n/2+x)是否等于sin(x)還應(yīng)強(qiáng)調(diào)并不是所有的函數(shù)都會(huì)有最小正周期。
c:奇偶性:在講解定義時(shí),,應(yīng)該強(qiáng)調(diào),,在判斷函數(shù)是否為奇偶函數(shù)時(shí),必須先看其定義域是否關(guān)于原點(diǎn)對(duì)稱,,后再由f(x)=f(-x)或f(-x)=-f(x),,也就是說(shuō),定義域關(guān)于原點(diǎn)對(duì)稱,,一個(gè)函數(shù)有奇偶性的必要條件,,還應(yīng)強(qiáng)調(diào)并不是所有的函數(shù)都有奇偶性,但也有函數(shù)既是奇函數(shù),,也是偶函數(shù),。可以舉例說(shuō)明:奇函數(shù)一定關(guān)于原點(diǎn)對(duì)稱,,偶函數(shù)一定關(guān)于y軸對(duì)稱,。反之也成立。
d:在講解周期性,、奇偶性,、單調(diào)性時(shí)可有多媒體課件實(shí)現(xiàn)。
(1),、對(duì)稱軸:y=sinx的對(duì)稱軸是x=kn+n/2;y=cosx的對(duì)稱軸是x=kn;對(duì)稱性;
(2)對(duì)稱中心:y=sinx的對(duì)稱中心是(kn,0)y=cosx的對(duì)稱中心是(kn+n/2,0)
當(dāng)y=sinxx∈[-n/2+2kn,n/2+2kn]時(shí),,曲線逐漸上升,y的值由-1逐漸增加到1;
單調(diào)性x∈[n/2+2kn,n/2+2kn]時(shí),,曲線逐漸下降,,y的值由1逐漸減少到-1;
當(dāng)y=cosxx∈[-n+2kn,2kn]時(shí),曲線逐漸上升,,y的值由-1逐漸增加到1;
x∈[2kn,n+2kn]時(shí),,曲線逐漸下降,y的值由1逐漸減少到-1;
例1:
cos(-23n/5)-cos(-17n/4)
問(wèn):能否求出上式的值?能否求出其值比0大還是小?須運(yùn)用我們這節(jié)課所學(xué)的哪部分知識(shí)?
求上式的值大于0還是小于0?
∵y=cosx是偶函數(shù),,∴原式為cos(23n/5)-cos(17n/4)
可知cos(23n/5)
即cos(-23n/5)-cos(-17n/4)<0
例2:y=√sinx+1
提出問(wèn)題:學(xué)生能提出什么問(wèn)題?
教師引導(dǎo):上式有沒(méi)有最大值,最小值,,值域,,什么時(shí)候取得最大值?什么時(shí)候取得最小值?奇偶性如何?能不能畫(huà)出它的圖象?圖象與y=cosx有什么關(guān)系?
求取的最大值的x的值所有集合。
當(dāng)x取最大值時(shí)的取值為x=kn+n/2(k∈r)
即取的最大值的x的值的所有集合為[x∣x=kn+n/2(k∈r)]
例3:y=√sinx的定義域,。
由0≦sinx≦1可得:
x的定義域?yàn)椋?kn≦x≦&pro
d;+2kn(k∈r)
即x的定義域?yàn)閇2kn,,n+2kn](k∈r)
問(wèn):可不可以求值域?有沒(méi)有奇偶性?如果有的話,是奇函數(shù)還是偶函數(shù)?
拓展:求上式函數(shù)的奇偶性,。一般來(lái)講,,學(xué)生會(huì)用定義法求出上式既不是奇函數(shù),也不是偶函數(shù)。
結(jié)果:上式既不是奇函數(shù),,也不是偶函數(shù),。
問(wèn):為什么呢?
強(qiáng)調(diào):函數(shù)有奇偶性的必要條件是定義域關(guān)于原點(diǎn)對(duì)稱。
通過(guò)本節(jié)學(xué)習(xí),,要求掌握正,、余弦函數(shù)的性質(zhì)以及性質(zhì)的簡(jiǎn)單應(yīng)用,解決一些相關(guān)問(wèn)題,。
使學(xué)生通過(guò)作業(yè)進(jìn)一步掌握和鞏固本節(jié)內(nèi)容
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇三
1,、教材的地位與作用。
本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來(lái)學(xué)習(xí)如何預(yù)測(cè)不確定事件(隨機(jī)事件)發(fā)生的可能性的大小,。"用概率預(yù)測(cè)隨機(jī)發(fā)生的可能性大小,,在日常生活、自然,、科技領(lǐng)域有著廣泛的應(yīng)用,,學(xué)習(xí)本單元知識(shí),無(wú)論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會(huì)實(shí)踐活動(dòng)都是十分必要的,。概率的概念比較抽象,,概率的定義學(xué)生較難理解。
在教材的處理上,,采取小單元教學(xué),,本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ),。
2、重點(diǎn)與難點(diǎn),。
重點(diǎn):對(duì)概率意義的理解,,經(jīng)過(guò)多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測(cè)概率的方法,,以及用列舉法求概率的方法,。
難點(diǎn):對(duì)概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。
知識(shí)與技能:掌握用頻率預(yù)測(cè)概率和用列舉法求概率方法,。
過(guò)程與方法:組織學(xué)生自主探究,,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,,進(jìn)而進(jìn)行分析,、歸納、總結(jié),,了解并感受概率的定義的過(guò)程,,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語(yǔ)言描述客觀世界,。
情感態(tài)度價(jià)值觀:學(xué)生經(jīng)歷觀察,、分析、歸納,、確認(rèn)等數(shù)學(xué)活動(dòng),,感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對(duì)立統(tǒng)一規(guī)律,,同時(shí)為概率的精準(zhǔn),、新穎、獨(dú)特的思維方法所震撼,,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,,增強(qiáng)對(duì)數(shù)學(xué)價(jià)值觀的認(rèn)識(shí)。
引導(dǎo)學(xué)生自主探究,、合作交流,、觀察分析、歸納總結(jié),,讓學(xué)生經(jīng)歷知識(shí)(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)習(xí)數(shù)學(xué),、掌握數(shù)學(xué),,并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習(xí)的組織者,、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,,有序組織學(xué)生活動(dòng),,讓課堂充滿生機(jī)活力,,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。
1,、引導(dǎo)學(xué)生探究
精心設(shè)計(jì)問(wèn)題一,學(xué)生經(jīng)過(guò)對(duì)問(wèn)題一的探究,,一方面復(fù)習(xí)前面學(xué)過(guò)的"確定事件和不確定事件"的知識(shí),,為學(xué)好本節(jié)資料理清知識(shí)障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測(cè)隨機(jī)事件可能性發(fā)生大小),。引導(dǎo)學(xué)生對(duì)問(wèn)題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),,使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過(guò)程,。
2、歸納概括
學(xué)生從試驗(yàn)中得到的統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,,讓學(xué)生明確概率定義的由來(lái),。
引導(dǎo)學(xué)生重新對(duì)問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,,得到用列舉法求概率的公式,,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,,既培養(yǎng)學(xué)生的分析問(wèn)題本事,,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。
3,、舉例應(yīng)用
⑴引導(dǎo)學(xué)生對(duì)教材書(shū)例題,、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,,讓學(xué)生掌握用列舉法求概率的方法,。
⑵引導(dǎo)學(xué)生對(duì)練習(xí)中的問(wèn)題思考與探究,鞏固對(duì)概率公式的應(yīng)用及加深對(duì)概率意義的理解,。
深化發(fā)展
⑴設(shè)置3個(gè)小題目,,引導(dǎo)學(xué)生歸納、分析,、總結(jié),,加深對(duì)知識(shí)與方法的理解,并學(xué)會(huì)靈活運(yùn)用,。
⑵讓學(xué)生設(shè)計(jì)活動(dòng)資料,,對(duì)知識(shí)進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識(shí)思考問(wèn)題和解決問(wèn)題,,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新本事,。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇四
概率是高中數(shù)學(xué)的新增內(nèi)容,它自成體系,,是數(shù)學(xué)中一個(gè)較獨(dú)立的學(xué)科分支,,與以往所學(xué)的數(shù)學(xué)知識(shí)有很大的區(qū)別,但與人們的日常生活密切相關(guān),,而且對(duì)思維能力有較高要求,,在高考中占有重要地位,。
本節(jié)內(nèi)容在本章節(jié)的地位:《條件概率》(第一課時(shí))是高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材數(shù)學(xué)選修2—3第二章第二節(jié)的內(nèi)容,它在教材中起著承前啟后的作用,,一方面,,可以鞏固古典概型概率的計(jì)算方法,另一方面,,為研究相互獨(dú)立事件打下良好的基礎(chǔ),。
教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵:教學(xué)重點(diǎn)是條件概率的定義,、計(jì)算公式的推導(dǎo)及條件概率的計(jì)算,;難點(diǎn)是條件概率的判斷與計(jì)算;教學(xué)關(guān)鍵是數(shù)學(xué)建模,。
根據(jù)上述教材分析,,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定如下教學(xué)目標(biāo):
基礎(chǔ)知識(shí)目標(biāo)——掌握條件概率的定義及計(jì)算方法
思想方法目標(biāo)——?dú)w納,、類比的方法和建模思想
能力培養(yǎng)目標(biāo)——培養(yǎng)學(xué)生思維的靈活性及知識(shí)的遷移能力
根據(jù)這兩年高考改卷的反饋信息,,考生在概率題的書(shū)面表達(dá)上丟分的情況是很普遍的,因此本節(jié)課還想達(dá)到:
表達(dá)能力目標(biāo)——培養(yǎng)學(xué)生書(shū)面表達(dá)的嚴(yán)謹(jǐn)和簡(jiǎn)潔
個(gè)性品質(zhì)目標(biāo)——培養(yǎng)學(xué)生克服“心欲通而不能,,口欲講而不會(huì)”的困難,,提高探索問(wèn)題的積極性和學(xué)習(xí)數(shù)學(xué)的興趣
在教學(xué)中,不僅要使學(xué)生“知其然”,,而且要使學(xué)生“知其所以然”,。為了體現(xiàn)以生為本,遵循學(xué)生的認(rèn)知規(guī)律,,堅(jiān)持以教師為主導(dǎo),,學(xué)生為主體的教學(xué)思想,體現(xiàn)循序漸進(jìn)的教學(xué)原則,,我采用引導(dǎo)發(fā)現(xiàn)法,、分析討論法的教學(xué)方法,通過(guò)提問(wèn),、啟發(fā),、設(shè)問(wèn)、歸納,、講練結(jié)合,、適時(shí)點(diǎn)撥的方法,讓學(xué)生的思維活動(dòng)在老師的引導(dǎo)下層層展開(kāi),,讓學(xué)生大膽參與課堂教學(xué),,使他們“聽(tīng)”有所“思”,“練”有所“獲”,,使傳授知識(shí)與培養(yǎng)能力融為一體,。
以建構(gòu)主義為指導(dǎo),,采用以啟發(fā)式教學(xué)為主,同時(shí)結(jié)合師生共同討論,、歸納的教學(xué)方法,根據(jù)學(xué)生的認(rèn)知水平,,為課堂設(shè)計(jì)了:
①創(chuàng)設(shè)情景——引入概念
②類比推導(dǎo)——得出公式
③討論研究——?dú)w納方法
④即時(shí)訓(xùn)練——鞏固方法
⑤總結(jié)反思——提高認(rèn)識(shí)
⑥作業(yè)布置——評(píng)價(jià)反饋
六個(gè)層次的學(xué)法,,它們環(huán)環(huán)相扣,,層層深入,,從而順利完成教學(xué)目標(biāo)。
創(chuàng)設(shè)情景——引入概念
首先引入兩個(gè)實(shí)際問(wèn)題,,激發(fā)學(xué)生的興趣,。
【實(shí)例1】3張獎(jiǎng)券中只有1張能中獎(jiǎng),現(xiàn)分別由3名同學(xué)無(wú)放回地抽取,,最后一名同學(xué)抽到中獎(jiǎng)獎(jiǎng)券的概率是多少,?若第一個(gè)同學(xué)沒(méi)有抽到中獎(jiǎng)獎(jiǎng)券,則最后一名同學(xué)抽到中獎(jiǎng)獎(jiǎng)券的概率是多少,?
【實(shí)例2】有5道快速搶答題,,其中3道理科題,2道文科題,,從中無(wú)放回地抽取兩次,,每次抽取1道題,兩次都抽到理科題的概率是多少,?若第一次抽到理科題,,則第二次抽到理科題的概率是多少?
每個(gè)實(shí)例有兩個(gè)問(wèn)題組成,,后一個(gè)問(wèn)題多一個(gè)限制條件,,教師引導(dǎo)學(xué)生對(duì)比兩個(gè)實(shí)例中前后問(wèn)題的區(qū)別和聯(lián)系,概括出條件概率的定義,。
由于判斷事件的類型對(duì)選擇概率公式起著決定性影響,,因此在引入定義后讓學(xué)生再做一組判斷題練習(xí)以鞏固對(duì)定義的理解。
【練習(xí)】判斷下列是否屬于條件概率
⒈,、在管理系中選1個(gè)人排頭舉旗,,恰好選中一個(gè)的是三年級(jí)男生的概率
⒉、有10把鑰匙,,其中只有1把能將門打開(kāi),隨機(jī)抽出1把試開(kāi),若試過(guò)的不再用,,則第2次能將門打開(kāi)的概率
⒊,、某小組12人分得1張球票,,依次抽簽,,已知前4個(gè)人未摸到,則第5個(gè)人模到球票的概率
⒋,、兩臺(tái)車床加工同樣的零件,,第一臺(tái)的次品率未0.03,,第二臺(tái)的次品率為0.02,兩臺(tái)車床加工的零件放在一起,,隨機(jī)取出一個(gè)零件是發(fā)現(xiàn)是次品,則它是第二臺(tái)機(jī)床加工的概率是多少,?
⒌,、箱子里裝有10件產(chǎn)品,,其中只有一件是次品,,在9件合格品中,有6件是一等品,,3件二等品,現(xiàn)從中任取3件,若取得的都是合格,則僅有1件是一等品的概率
通過(guò)以上練習(xí)使學(xué)生能準(zhǔn)確區(qū)分條件概率與一般概率。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇五
今天我說(shuō)課的課題是“兩條直線所成的角”的第一課時(shí),,我準(zhǔn)備從以下五個(gè)方面來(lái)匯報(bào)我是如何處理教材和設(shè)計(jì)教學(xué)過(guò)程的。
通過(guò)這節(jié)課的教學(xué),,要使學(xué)生掌握兩條直線所成角的概念和夾角公式的推導(dǎo)方法,,掌握一直線到另一直線的角和兩條直線的夾角公式及其應(yīng)用,,正確理解夾角公式成立的條件及特殊夾角的求法。能力的培養(yǎng)也是數(shù)學(xué)教學(xué)不可缺少的一環(huán),,通過(guò)這節(jié)課的教學(xué),,應(yīng)培養(yǎng)學(xué)生數(shù)形結(jié)合的能力和提高他們閱讀理解的自學(xué)能力。另外滲透“由特殊到一般”的辯證思想和“分類討論”的思想也是這堂課的重要目標(biāo),。
這節(jié)課所選用的教學(xué)內(nèi)容是:教材中的定義,、公式,但例題的選擇較課本難度有所加深,,這是因?yàn)榻滩纳系睦}只是公式的直接應(yīng)用,,通過(guò)學(xué)生自學(xué)和思考老師提出的問(wèn)題后,對(duì)一般學(xué)生來(lái)說(shuō)是沒(méi)有什么問(wèn)題的,。因此,,本著因材施教的原則,并著眼于會(huì)考與高考的要求,,例題的難度有所加深,,這樣選擇教學(xué)內(nèi)容也是與教學(xué)目標(biāo)相符的。
我認(rèn)為這節(jié)課的教學(xué)重點(diǎn)是兩條直線的夾角公式及其應(yīng)用,,這是因?yàn)椋?/p>
1.《全日制中學(xué)數(shù)學(xué)教學(xué)大綱》上明確規(guī)定要求學(xué)生“掌握兩條直線所成的角”,。
2. 數(shù)學(xué)知識(shí)的應(yīng)用也是會(huì)考與高考的要求,因此兩條直線夾角公式的應(yīng)用毫無(wú)疑問(wèn)地成為重點(diǎn),。
教學(xué)難點(diǎn)是直線l1到l2的角的公式的推導(dǎo),,理由有二:
1. 由于一條直線到另一條直線的角是帶方向的角,這是學(xué)生不易理解的地方,。
2. 在推導(dǎo)直線l1到l2的角的公式的過(guò)程中,,要進(jìn)行分類討論,這是學(xué)生的薄弱環(huán)節(jié),。
根據(jù)這節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,,我采用自學(xué)輔導(dǎo)的方法進(jìn)行教學(xué)。
自學(xué)輔導(dǎo)法符合教學(xué)論中的自覺(jué)性和積極性,、鞏固性,、可接受性,,教學(xué)與發(fā)展相結(jié)合,教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則,;自學(xué)輔導(dǎo)法的關(guān)鍵是通過(guò)老師的引導(dǎo)和啟發(fā)要求學(xué)生針對(duì)老師提出的問(wèn)題閱讀理解最終解決問(wèn)題。這樣就能充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí)。
課堂教學(xué)的目的就是在給學(xué)生傳授知識(shí)的同時(shí),,教給他們好的方法,使他們“會(huì)學(xué)習(xí)”,。
這一節(jié)課一開(kāi)始讓學(xué)生在觀察中產(chǎn)生疑問(wèn),,在疑惑不解中,,通過(guò)老師的引導(dǎo)。并通過(guò)自已閱讀教材使疑問(wèn)逐步解決,,這樣做既激發(fā)了他們的學(xué)習(xí)欲望,,也培養(yǎng)了他們發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的能力,。
在給出例題后,,大多數(shù)學(xué)生能想到利用入射角等于反射角來(lái)解決,這時(shí)要鼓勵(lì)學(xué)生再“嘗試”用其它方法來(lái)解,,通過(guò)嘗試,,學(xué)生的思維能力得到了培養(yǎng),思維空間得到了拓廣,,既活躍了課堂氣氛,,也提高了學(xué)生的學(xué)習(xí)積極性。
首先引導(dǎo)學(xué)生回憶兩條直線平行與垂直的判定方法,,并從兩條直線垂直是兩條直線相交的特殊情況出發(fā),,引出“兩條直線所成的角”這一課題。
接著打出投影片①,,讓學(xué)生通過(guò)觀察說(shuō)出圖中直線l1與l2所成角的銳角(或直角)θ的大小,,并要求給出θ與直線l1,、l2的傾斜角α1、α2之間的關(guān)系,。圖(1),、(2)學(xué)生容易觀察解決,而圖(3),、(4)卻無(wú)法直接觀察出θ的大小 ,,但能確定θ與α1、α2之間的關(guān)系,,這時(shí)老師應(yīng)趁熱打鐵,,引導(dǎo)學(xué)生走上“已知三角函數(shù)值求角”的正確軌道上。這樣設(shè)計(jì),,使學(xué)生目標(biāo)明確,,避免盲目性。
然后老師掛出小黑板,,出示問(wèn)題(1)—(5),,讓學(xué)生帶著問(wèn)題閱讀教材,使他們明確直線l1到l2的角的公式與兩直線夾角公式的聯(lián)系與區(qū)別,。這樣既培養(yǎng)了學(xué)生獨(dú)立思考和自學(xué)能力,,又使他們主動(dòng)積極地參與教學(xué)活動(dòng)。
閱讀完后先回答問(wèn)題(1)—(5),,這時(shí)為了學(xué)生對(duì)所學(xué)公式有較深的理解,,先讓學(xué)生將開(kāi)始給出的圖(3)、(4)作為課堂練習(xí)進(jìn)行鞏固訓(xùn)練,,并要兩位學(xué)生演板,,演板后師生共同訂正。接著為了使學(xué)生對(duì)兩條直線所成的角有較全面的認(rèn)識(shí),,老師與學(xué)生共同討論各種位置的兩條直線所成角的情形,,這樣的.安排也是為高考《考試說(shuō)明》中要求掌握“邏輯劃分(分類討論)的思想”而設(shè)計(jì)的,目的是讓學(xué)生形成對(duì)知識(shí)系統(tǒng)化和網(wǎng)絡(luò)化的認(rèn)識(shí),,也突破了本節(jié)課的難點(diǎn),。
“精通的目的在于學(xué)習(xí)”。公式的應(yīng)用是這節(jié)課的重點(diǎn),,在學(xué)生把概念和公式的來(lái)龍去脈搞清楚后,,再打出投影片②(例題),例題是根據(jù)《會(huì)考綱要》中“能用坐標(biāo)法解決涉及直線的簡(jiǎn)單應(yīng)用(如光線的反射問(wèn)題,、有關(guān)軸對(duì)稱和點(diǎn)對(duì)稱問(wèn)題)”的要求而選取的,。大多數(shù)學(xué)生可以想到利用反射角等于入射角來(lái)求解,,此時(shí),,進(jìn)一步引導(dǎo)學(xué)生從對(duì)稱的角度來(lái)思考,,又有兩種求解方法(見(jiàn)投影片)。
例題講完后再將問(wèn)題加以引申,,這樣的設(shè)計(jì)主要是讓學(xué)有余力的學(xué)生沒(méi)有“饑餓感”,。
課堂小結(jié)是教學(xué)的重要環(huán)節(jié)之一,為了便于學(xué)生記憶和理解,,我把這堂課的內(nèi)容歸納為兩個(gè)概念,、兩個(gè)公式和四種情形。然后給出兩個(gè)思考題(見(jiàn)投影片③),。思考題的目的是促使學(xué)生正確,、周密地思考問(wèn)題,同時(shí)為講解下一節(jié)課作準(zhǔn)備,,起承上啟下的作用,。
最后是布置作業(yè),它是緊緊圍繞本節(jié)課的教學(xué)內(nèi)容而選擇的,,通過(guò)作業(yè)的訓(xùn)練可以及時(shí)反饋學(xué)生所學(xué)知識(shí)的掌握程度,。
以上我從五個(gè)方面闡述了“兩條直線所成的角”中第一課時(shí)教學(xué)內(nèi)容的有關(guān)設(shè)想,不足之處,,請(qǐng)各位老師批評(píng)賜教,。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇六
各位領(lǐng)導(dǎo),各位老師:
我說(shuō)課的課題是《任意角的三角函數(shù)》,,內(nèi)容取自人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》④(必修)第1,。2。1節(jié),。
本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:三角函數(shù)是描述周期運(yùn)動(dòng)現(xiàn)象的重要的數(shù)學(xué)模型,,有非常廣泛的應(yīng)用。三角函數(shù)的定義是在初中對(duì)銳角三角函數(shù)的定義以及剛學(xué)過(guò)的“角的概念的推廣”的基礎(chǔ)上討論和研究的,。三角函數(shù)的定義是本章最基本的概念,,對(duì)三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要,是其他所有知識(shí)的出發(fā)點(diǎn),。緊緊扣住三角函數(shù)定義這個(gè)寶貴的源泉,,可以自然地導(dǎo)出本章的具體內(nèi)容:三角函數(shù)線、定義域,、符號(hào)判斷,、值域、同角三角函數(shù)關(guān)系,、多組誘導(dǎo)公式,、多組變換公式、圖象和性質(zhì)。 三角函數(shù)的定義在教材中起著承前啟后的作用,,一方面,,通過(guò)這部分內(nèi)容的學(xué)習(xí),可以幫助學(xué)生更加深入理解函數(shù)這一基本概念,,另一方面它又為平面向量,、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備。三角函數(shù)知識(shí)還是物理學(xué),、高等數(shù)學(xué),、測(cè)量學(xué),、天文學(xué)的重要基礎(chǔ),。
三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),,由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點(diǎn)就是定義本身,。
數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),,更重要的是傳授給學(xué)生數(shù)學(xué)思想,、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生展示嘗試類比,、數(shù)形結(jié)合等數(shù)學(xué)思想方法,。
教學(xué)重點(diǎn):任意角的三角函數(shù)的定義,三角函數(shù)的符號(hào)規(guī)律,。
教學(xué)難點(diǎn):任意角的三角函數(shù)概念的建構(gòu)過(guò)程,。
教學(xué)關(guān)鍵:如何想到建立直角坐標(biāo)系;六個(gè)比值的確定性( α確定,,比值也隨之確定)與依賴性(比值隨著α的變化而變化),。
學(xué)生已經(jīng)掌握的內(nèi)容及學(xué)生學(xué)習(xí)能力
1。 學(xué)生在初中時(shí)已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,,掌握了銳角三角函數(shù)的一些常見(jiàn)的知識(shí)和求法,。
2。學(xué)生的運(yùn)算能力較差,。
3,。部分同學(xué)對(duì)數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。
4,。在探究問(wèn)題的能力,,合作交流的意識(shí)等方面發(fā)展不夠均衡,必須在老師一定的指導(dǎo)下才能進(jìn)行,。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征 ,我制定如下教學(xué)目標(biāo):
1?;A(chǔ)知識(shí)目標(biāo):使學(xué)生正確理解任意角的正弦,、余弦、正切的定義,,了解余切,、正割,、余割的定義,;
2。能力訓(xùn)練目標(biāo):通過(guò)學(xué)生積極參與知識(shí)的“發(fā)現(xiàn)”與“形成”的過(guò)程,培養(yǎng)合情猜測(cè)的能力,。
3,。情感目標(biāo):通過(guò)學(xué)習(xí),滲透數(shù)形結(jié)合和類比的數(shù)學(xué)思想,,培養(yǎng)學(xué)生良好的思維習(xí)慣,。
下面,,為了講清重點(diǎn)、難點(diǎn),,使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),,我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>
教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受,、記憶,、模仿和練習(xí),而且要自主探索,、合作交流,、師生互動(dòng),教師發(fā)揮組織者,、引導(dǎo)者,、合作者的作用,引導(dǎo)學(xué)生主體參與,、揭示本質(zhì),、經(jīng)歷過(guò)程。
根據(jù)本節(jié)課內(nèi)容,、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)教法,, 在課堂結(jié)構(gòu)上,,設(shè)計(jì)了 ①創(chuàng)設(shè)情境——揭示課題②推廣認(rèn)知——形成概念③鞏固新知——探求規(guī)律④總結(jié)反思——提高認(rèn)識(shí)⑤任務(wù)后延——自主探究五個(gè)層次的學(xué)法,它們環(huán)環(huán)相扣,,層層深入,,從而順利完成教學(xué)目標(biāo)。 接下來(lái),,我再具體談一談這堂課的教學(xué)過(guò)程:
總體來(lái)說(shuō),, 由舊及新,由易及難,,逐步加強(qiáng),,逐步推進(jìn),給定定義后通過(guò)應(yīng)用定義又逐步發(fā)現(xiàn)新知識(shí),,拓展,、完善定義。
先由初中的直角三角形中銳角三角函數(shù)的定義,,過(guò)度到直角坐標(biāo)系中銳角三角函數(shù)的定義,,再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義。
問(wèn)題1:在初中我們學(xué)習(xí)了銳角三角函數(shù),,那么銳角三角函數(shù)是如何定義的,?
【設(shè)計(jì)意圖】學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過(guò)程(類似于從有理數(shù)到實(shí)數(shù)的擴(kuò)展),。溫故知新,,要讓學(xué)生體會(huì)知識(shí)的產(chǎn)生、發(fā)展過(guò)程,,就要從源頭上開(kāi)始,,從學(xué)生現(xiàn)有認(rèn)知狀況開(kāi)始,對(duì)銳角三角函數(shù)的復(fù)習(xí)就必不可少,。
問(wèn)題 2:角的概念推廣之后,,這樣的三角函數(shù)定義還適用嗎?
問(wèn)題 3:若將銳角放入直角坐標(biāo)系中,,你能用角的終邊上的點(diǎn)的坐標(biāo)來(lái)表示銳角三角函數(shù)嗎,?
留時(shí)間讓學(xué)生獨(dú)立思考或自由討論,教師參與討論或巡回對(duì)學(xué)困生作啟發(fā)引導(dǎo),。
能表示嗎,?怎樣表示?針對(duì)剛才的問(wèn)題點(diǎn)名讓學(xué)生回答,。 用角的對(duì)邊,、鄰邊,、斜邊比值的說(shuō)法顯然是受到阻礙了,,由于前面已經(jīng)以直角坐標(biāo)系為工具來(lái)研究任意角了,學(xué)生一般會(huì)想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來(lái)研究任意角的三角函數(shù),。
從學(xué)生現(xiàn)有知識(shí)水平和認(rèn)知能力出發(fā),,創(chuàng)設(shè)問(wèn)題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,,進(jìn)行必要的啟發(fā),,將學(xué)生思維引上自主探索、合作交流的“再創(chuàng)造”征程,。
教師對(duì)學(xué)生回答情況進(jìn)行點(diǎn)評(píng)后布置任務(wù)情景:請(qǐng)同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義,!
師生共做(學(xué)生口述,教師板書(shū)圖形和比值),。
問(wèn)題 4:對(duì)于確定的角 ,,這三個(gè)比值是否與p在 的終邊上的位置有關(guān)?為什么,?
先讓學(xué)生想象思考,,作出主觀判斷,再引導(dǎo)學(xué)生觀察右圖,,
聯(lián)系相似三角形知識(shí),,探索發(fā)現(xiàn): 對(duì)于銳角α的每一個(gè)確定值,,
六個(gè)比值都是確定的,,不會(huì)隨p在終邊上的移動(dòng)而變化。
得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時(shí),,六個(gè)比值隨α的變化而變化,;但對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,,不會(huì)隨p在終邊上的移動(dòng)而變化。 所以,,六個(gè)比值分別是以角α為自變量,、以比值為函數(shù)值的函數(shù)。
將銳角的比值情形推廣到任意角α后,,水到渠成,,師生共同進(jìn)行探索和推廣出:任意角的三角函數(shù)定義。同時(shí)教師強(qiáng)調(diào):由于弧度制使角和實(shí)數(shù)建立了一一對(duì)應(yīng)關(guān)系,,所以三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù),,對(duì)數(shù)學(xué)學(xué)習(xí)能力較好的同學(xué)起到了很好的指導(dǎo)作用。
教師指出: sinα,、csα,、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,ctα,、cscα,、secα的定義域不要求記憶。
(關(guān)于值域,,到后面再學(xué)習(xí)),。
【設(shè)計(jì)意圖】定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域,。 指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,,也增進(jìn)對(duì)三角函數(shù)概念的掌握,。
為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,進(jìn)而達(dá)到鞏固提高的效果,,
例1,。已知角 的終邊過(guò)點(diǎn) ,求 的六個(gè)三角函數(shù)值
要求:讀完題目,,思考:計(jì)算什么,?需要準(zhǔn)備什么,?閉目心算,對(duì)照板書(shū),,模仿書(shū)面表達(dá)格式,。
鞏固定義之后,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,,以鞏固和加深對(duì)三角函數(shù)概念的理解,,通過(guò)課堂積極主動(dòng)的練習(xí)活動(dòng),培養(yǎng)學(xué)生分析解決問(wèn)題的能力,。
例2,。 求 的正弦、余弦和正切值,。
分析: 終邊上有無(wú)窮多個(gè)點(diǎn),,根據(jù)三角函數(shù)的定義,只要知道 終邊上任意一個(gè)點(diǎn)的坐標(biāo),,就可以計(jì)算這個(gè)角的三角函數(shù)值(或判斷其無(wú)意義)
師生探索:緊扣三角函數(shù)定義求解,,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢,?取定哪一點(diǎn)呢,?任意點(diǎn)、還是特殊點(diǎn),?要靈活,,只要能夠算出三角函數(shù)值,都可以,。
取特殊點(diǎn)能使計(jì)算更簡(jiǎn)明,。
等待學(xué)生基本理解和掌握三角函數(shù)定義后,觀察、分析初,、高中所計(jì)算的函數(shù)值有何變化,,讓學(xué)生意識(shí)到三角函數(shù)值的正負(fù)與角所在象限有關(guān), 然后引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來(lái)分析,,從而導(dǎo)出三角函數(shù)值的正負(fù)與角所在象限的關(guān)系,進(jìn)而由教師總結(jié)符號(hào)記憶方法,,便于學(xué)生記憶,。
【設(shè)計(jì)意圖】判斷三角函數(shù)值的正負(fù)符號(hào),是本章教材的一項(xiàng)重要的知識(shí),、技能要求。 要引導(dǎo)學(xué)生抓住定義,、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號(hào),,并總結(jié)出形象的“才”字符號(hào)法則,這也是理解和記憶的關(guān)鍵,。
由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容:⑴任意角的三角函數(shù)的定義及其定義域,;⑵三角函數(shù)的符號(hào)規(guī)律。讓學(xué)生通過(guò)知識(shí)性內(nèi)容的小結(jié),,把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),;通過(guò)數(shù)學(xué)思想方法的小結(jié),使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo),。
學(xué)生經(jīng)過(guò)以上四個(gè)環(huán)節(jié)的學(xué)習(xí),,已經(jīng)初步掌握了任意角的三角函數(shù)的定義及三角函數(shù)的符號(hào)規(guī)律,,有待進(jìn)一步提高認(rèn)知水平,因此我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的作業(yè),,其中思考題的設(shè)計(jì)思想是:綜合練習(xí)鞏固提高,,更為下節(jié)的學(xué)習(xí)內(nèi)容打下基礎(chǔ),同時(shí)留給學(xué)生課后自主探究,,這樣既使學(xué)生掌握基礎(chǔ)知識(shí),,又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的,,以有利于全體學(xué)生的發(fā)展,。
ctα、cscα,、secα的定義寫在sinα,、csα、tanα的左下方,,突出本節(jié)重要內(nèi)容的主體地位,。
結(jié)束:以上,我僅從說(shuō)教材,,說(shuō)學(xué)情,,說(shuō)教法,說(shuō)學(xué)法,說(shuō)教學(xué)程序上說(shuō)明了“教什么”和“怎么教”,,闡明了“為什么這樣教”,。
希望各位領(lǐng)導(dǎo) 、同行對(duì)本堂說(shuō)課提出寶貴意見(jiàn),。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇七
異面直線所成角說(shuō)課稿《異面直線所成角》是高中數(shù)學(xué)《立體幾何》一章中的第二節(jié)《空間兩直線》中的重要內(nèi)容,、《立體幾何》是高中數(shù)學(xué)教學(xué)中相對(duì)獨(dú)立的一章,而本節(jié)內(nèi)容恰是把平面內(nèi)的直線擴(kuò)展為空間任兩條直線的位置關(guān)系問(wèn)題,,是培養(yǎng)學(xué)生建立空間想象力的關(guān)鍵,,下面就從以下四個(gè)方面說(shuō)課。
高中《數(shù)學(xué)教學(xué)大綱》要求學(xué)生具有良好的空間想象力和一定的作圖識(shí)圖能力,,本節(jié)教學(xué)也要求培養(yǎng)學(xué)生對(duì)空間兩直線所成角這一立體概念的理解,,在此基礎(chǔ)上,再依據(jù)對(duì)學(xué)生進(jìn)行素質(zhì)教育的目標(biāo)制定了以下教學(xué)目標(biāo):
1,、認(rèn)知目標(biāo):理解空間兩異面直線所成角的概念,,并會(huì)作出,求出兩異面直線所成角,。
2,、能力目標(biāo):培養(yǎng)學(xué)生的識(shí)圖,作圖能力,,在習(xí)題講解中,,培養(yǎng)學(xué)生的空間想象力和發(fā)散思維。
3,、德育目標(biāo):在對(duì)學(xué)生進(jìn)行創(chuàng)造性思維培養(yǎng)的同時(shí),,激發(fā)學(xué)生對(duì)科學(xué)文化知識(shí)的探求熱情和邏輯清晰的辯證主義觀點(diǎn)。
教學(xué)重點(diǎn):對(duì)異面直線所成角的概念的理解和應(yīng)用,。
教學(xué)難點(diǎn):如何在實(shí)際問(wèn)題中求出異面直線所成角,。
本節(jié)內(nèi)容作為《立體幾何》中兩大重要概念之一––––"角"的初次接觸,就要求學(xué)生能牢固的落實(shí)兩異面直線所成角的概念及作法,,并能對(duì)具體問(wèn)題求出所成角,,這樣才能真正提高其空間想象力,根據(jù)上述目標(biāo)要求和學(xué)生思維模式缺乏"立體性"這一特點(diǎn),,我采用了"練習(xí)教學(xué)法",,從習(xí)題入手,輔以計(jì)算機(jī)軟件,,將平面圖形"立"起來(lái),為學(xué)生創(chuàng)設(shè)較好的思維空間,,增強(qiáng)了教學(xué)的直觀性,,再利用"問(wèn)題中心式"教法,提出問(wèn)題,對(duì)學(xué)生進(jìn)行啟發(fā),,讓學(xué)生自己動(dòng)腦,,動(dòng)口,動(dòng)手,,這樣既可以發(fā)揮教師的主導(dǎo)作用,,又突出了學(xué)生的主體地位、
要從兩個(gè)方面教會(huì)學(xué)生落實(shí)本節(jié)內(nèi)容,。
1,、根據(jù)計(jì)算機(jī)軟件所設(shè)計(jì)的空間幾何圖形,帶領(lǐng)學(xué)生去識(shí)圖,,讀圖,,作圖,并能依據(jù)圖形的特點(diǎn)去分析,,作出或找出所要求的所成角,,從而加強(qiáng)學(xué)生的圖形空間想象力。
2,、找到所求角后,,還需指導(dǎo)學(xué)生利用邏輯的分析和學(xué)過(guò)的平面幾何知識(shí)最終解決問(wèn)題。
第一步:采用"溫故式導(dǎo)入",,提問(wèn)學(xué)生"兩異面直線所成角"的定義,,加深學(xué)生對(duì)概念的掌握,在同學(xué)回答的同時(shí),,由計(jì)算機(jī)打出概念,,并在重點(diǎn)字"銳角或直角"處閃動(dòng),突出重點(diǎn),。
再利用計(jì)算機(jī)演示空間兩異面直線所成角的作法,,重點(diǎn)體現(xiàn)選取不同點(diǎn)平移均可。
第二步:進(jìn)入例題講解:"如何對(duì)具體問(wèn)題求異面直線所成角呢"
首先,,由計(jì)算機(jī)給出本節(jié)第一道例題,,及圖。
教師帶領(lǐng)學(xué)生一起審題,,該題為求證"兩直線平行"的簡(jiǎn)單證明題,,其目的在于加強(qiáng)學(xué)生對(duì)異面直線所成角概念的理解,突出選取"空間任一點(diǎn)平移直線均可"這一原則,,為此,,特由計(jì)算機(jī)設(shè)計(jì)出選取不同點(diǎn)平移的圖及證法,再一次強(qiáng)調(diào)概念,。
然后,,進(jìn)入第二道例題,同樣由計(jì)算機(jī)給出題目和圖,該題為"在已知正方體內(nèi)求兩組異面直線所成角問(wèn)題",,不同于前題教法處在于,,在教師進(jìn)行了啟發(fā)性提問(wèn)后,由計(jì)算機(jī)給出3個(gè)不同選點(diǎn),,教師讓同學(xué)自己分析并到前面操作電腦,,選取解法,,用計(jì)算機(jī)進(jìn)行演示,,并由學(xué)生自己講解,、最后由教師對(duì)學(xué)生的解法進(jìn)行歸納總結(jié),從而得出"對(duì)特殊幾何體中異面直線所成角問(wèn)題應(yīng)以幾何體為依托,尋找特殊位置進(jìn)行平移,,并利用三角函數(shù)及平面幾何知識(shí)進(jìn)行求解"這一結(jié)論,。
例3的講解思路及方法同例2相同,。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇八
各位老師好:
我是戶縣二中的李敏,今天講的課題是《平面向量的坐標(biāo)的表示》,,本節(jié)課是高中數(shù)學(xué)北師大版必修4第二章第4節(jié)的內(nèi)容,下面我將從四個(gè)方面對(duì)本節(jié)課的教學(xué)設(shè)計(jì)來(lái)加以說(shuō)明,。
本節(jié)課是在學(xué)生已學(xué)知識(shí)的基礎(chǔ)上進(jìn)行展開(kāi)學(xué)習(xí)的,,也是對(duì)以前所學(xué)知識(shí)的鞏固和發(fā)展,,但對(duì)學(xué)生的知識(shí)準(zhǔn)備情況來(lái)看,,學(xué)生對(duì)相關(guān)基礎(chǔ)知識(shí)掌握情況是很好,所以在復(fù)習(xí)時(shí)要及時(shí)對(duì)學(xué)生相關(guān)知識(shí)進(jìn)行提問(wèn),,然后開(kāi)展對(duì)本節(jié)課的鞏固性復(fù)習(xí)。而本節(jié)課學(xué)生會(huì)遇到的困難有:數(shù)軸,、坐標(biāo)的表示,;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運(yùn)算,。
在歷年高考試題中,平面向量占有重要地位,,近幾年更是有所加強(qiáng),。這些試題不僅平面向量的相關(guān)概念等基本知識(shí),而且??计矫嫦蛄康倪\(yùn)算,;平面向量共線的條件;用坐標(biāo)表示兩個(gè)向量的夾角等知識(shí)的解題技能,??疾閷W(xué)生在數(shù)學(xué)學(xué)習(xí)和研究過(guò)程中知識(shí)的遷移,、融會(huì),進(jìn)而考查學(xué)生的學(xué)習(xí)潛能和數(shù)學(xué)素養(yǎng),,為考生展現(xiàn)其創(chuàng)新意識(shí)和發(fā)揮創(chuàng)造能力提高廣闊的空間,,相關(guān)題型經(jīng)常在高考試卷里出現(xiàn),而且經(jīng)常以選擇,、填空,、解答題的形式出現(xiàn)。
1.會(huì)用坐標(biāo)表示平面向量的加法,、減法與數(shù)乘運(yùn)算.
2.理解用坐標(biāo)表示的平面向量共線的條件.
3.掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算.
4.能用坐標(biāo)表示兩個(gè)向量的夾角,理解用坐標(biāo)表示的平面向量垂直的條件.
教學(xué)重難點(diǎn)的確定與突破:
根據(jù)《20xx高考大綱》和對(duì)近幾年高考試題的分析,,我確定本節(jié)的教學(xué)重點(diǎn)為:平面向量的坐標(biāo)表示及運(yùn)算。難點(diǎn)為:平面向量坐標(biāo)運(yùn)算與表示的理解,。我將引導(dǎo)學(xué)生通過(guò)復(fù)習(xí)指導(dǎo),,歸納概念與運(yùn)算規(guī)律,模仿例題解決習(xí)題等過(guò)程來(lái)達(dá)到突破重難點(diǎn),。
根據(jù)本節(jié)課是復(fù)習(xí)課,我采用了“自學(xué),、指導(dǎo),、練習(xí)”的教學(xué)方法,即通過(guò)對(duì)知識(shí)點(diǎn),、考點(diǎn)的復(fù)習(xí),,圍繞教學(xué)目標(biāo)和重難點(diǎn)提出一系列精心設(shè)計(jì)的問(wèn)題,在教師的指導(dǎo)下,,用做題來(lái)復(fù)習(xí)和鞏固舊知識(shí)點(diǎn),。
根據(jù)平時(shí)作業(yè)中的問(wèn)題來(lái)看,學(xué)生會(huì)本節(jié)課遇到的困難有:數(shù)軸,、坐標(biāo)的表示,;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運(yùn)算等方面,。根據(jù)學(xué)情,,所以我將指導(dǎo)通過(guò)“自學(xué),探究,,模仿”等過(guò)程完成本節(jié)課的學(xué)習(xí),。
(一) 知識(shí)梳理:
1.向量坐標(biāo)的求法
(1)若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo).
(2)設(shè)a(x1,,y1),,b(x2,y2),,則
=_________________
||=_______________
(二)平面向量坐標(biāo)運(yùn)算
1.向量加法,、減法,、數(shù)乘向量
設(shè) =(x1,y1),, =(x2,,y2),則
+ = - = λ = .
2.向量平行的坐標(biāo)表示
設(shè) =(x1,,y1),, =(x2,y2),,則 ∥ ________________.
(三)核心考點(diǎn)習(xí)題演練
考點(diǎn)1.平面向量的坐標(biāo)運(yùn)算
例1.已知a(-2,4),b(3,-1),c(-3,-4).設(shè) (1)求3 + -3 ;
(2)求滿足 =m +n 的實(shí)數(shù)m,n;
練:(20xx江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈r),則m-n的值為 .
考點(diǎn)2平面向量共線的坐標(biāo)表示
例2:平面內(nèi)給定三個(gè)向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求實(shí)數(shù)k的值;
練:(20xx,,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實(shí)數(shù),( +λ )∥ ,則λ= ( )
思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?
考點(diǎn)3平面向量數(shù)量積的坐標(biāo)運(yùn)算
例3“已知正方形abcd的邊長(zhǎng)為1,點(diǎn)e是ab邊上的動(dòng)點(diǎn),
則的值為 ; 的最大值為 .
【提示】解決涉及幾何圖形的向量數(shù)量積運(yùn)算問(wèn)題時(shí),可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來(lái)運(yùn)算,,這樣可以使數(shù)量積的運(yùn)算變得簡(jiǎn)捷.
練:(20xx,安徽,,13)設(shè) =(1,2), =(1,1), = +k .若 ⊥ ,則實(shí)數(shù)k的值等于( )
【思考】?jī)煞橇阆蛄?⊥ 的充要條件: =0 .
考點(diǎn)4:平面向量模的坐標(biāo)表示
例4:(20xx湖南,理8)已知點(diǎn)a,b,c在圓x2+y2=1上運(yùn)動(dòng),且ab⊥bc,若點(diǎn)p的坐標(biāo)為(2,0),則的最大值為( )
a.6 b.7 c.8 d.9
練:(20xx,上海,,12)
在平面直角坐標(biāo)系中,,已知a(1,0),,b(0,,-1),p是曲線上一個(gè)動(dòng)點(diǎn),,則 的取值范圍是,?
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇九
1、教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié),、圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用、圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),,是研究二次曲線的開(kāi)始,,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),,無(wú)論在知識(shí)上還是方法上都有著積極的意義,,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用、
2,、學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的、但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng),、學(xué)習(xí)程度較淺,,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難、另外學(xué)生在探究問(wèn)題的能力,,合作交流的意識(shí)等方面有待加強(qiáng),、
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,,我制定如下教學(xué)目標(biāo):
3,、教學(xué)目標(biāo)
(1)知識(shí)目標(biāo):
①掌握?qǐng)A的標(biāo)準(zhǔn)方程;
②會(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),,能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程,;
③利用圓的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題、
(2)能力目標(biāo):
①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力,;
②加深對(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用,;
③增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)、
(3)情感目標(biāo):
①培養(yǎng)學(xué)生主動(dòng)探究知識(shí),、合作交流的意識(shí),;
②在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣、
根據(jù)以上對(duì)教材,、教學(xué)目標(biāo)及學(xué)情的分析,,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):
4、教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用,、
(2)難點(diǎn):
①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程,;
②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題、
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),,我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:
1、教法分析為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上,、另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),,借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程,、
2,、學(xué)法分析通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解,、通過(guò)求圓的標(biāo)準(zhǔn)方程,,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓、通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,,熟悉用待定系數(shù)法求的過(guò)程,、
下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:
整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):
創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高
反饋訓(xùn)練形成方法小結(jié)反思拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖、
首先:縱向敘述教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境——啟迪思維
問(wèn)題一已知隧道的截面是半徑為4m的半圓,,車輛只能在道路中心線一側(cè)行駛,,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道,?
通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,,把學(xué)生的思維由用勾股定理求線段cd的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決、一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,,另一方面,,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,,從而很自然的進(jìn)入了本課的主題,、用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,,應(yīng)用于實(shí)際,,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望、這樣獲取的知識(shí),,不但易于保持,,而且易于遷移、
通過(guò)對(duì)問(wèn)題一的探究,,抓住了學(xué)生的注意力,,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,,進(jìn)入第二環(huán)節(jié),、
(二)深入探究——獲得新知
問(wèn)題二1、根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),,半徑為的圓的方程,?
2、如果圓心在,,半徑為時(shí)又如何呢,?
這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),,半徑為4的圓的標(biāo)準(zhǔn)方程后,,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程,、然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究,、我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法,、圖形變換法,、向量平移法,、
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),,進(jìn)入第三環(huán)節(jié),、
(三)應(yīng)用舉例——鞏固提高
i、直接應(yīng)用內(nèi)化新知
問(wèn)題三
1,、寫出下列各圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點(diǎn),,半徑為3;
(2)經(jīng)過(guò)點(diǎn),,圓心在點(diǎn),、
2、寫出圓的圓心坐標(biāo)和半徑,、
我設(shè)計(jì)了兩個(gè)小問(wèn)題,,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,,這兩題比較簡(jiǎn)單,,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo),、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,,為后面探究圓的切線問(wèn)題作準(zhǔn)備、
ii,、靈活應(yīng)用提升能力
問(wèn)題四
1,、求以點(diǎn)為圓心,并且和直線相切的圓的方程,、
2,、求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程,、
3,、已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程,、
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么,?
我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),,學(xué)生會(huì)很快求出半徑,,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程、第二個(gè)小題有些困難,,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓、第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間,、最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納,、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,,使探究氣氛達(dá)到高潮、
iii,、實(shí)際應(yīng)用回歸自然
問(wèn)題五
如圖是某圓拱橋的一孔圓拱的示意圖,,該圓拱跨度ab=20m,拱高op=4m,,在建造時(shí)每隔4m需用一個(gè)支柱支撐,,求支柱的長(zhǎng)度(精確到0.01m)
我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,,同時(shí)也與引例相呼應(yīng),,使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí),、
(四)反饋訓(xùn)練——形成方法
問(wèn)題六
1,、求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程,、
2,、求圓過(guò)點(diǎn)的切線方程、
3,、求圓過(guò)點(diǎn)的切線方程,、
接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練、這一環(huán)節(jié)中,,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,,成功的喜悅,,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心,、另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,,另外這道題目有兩解,,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果,、
(五)小結(jié)反思——拓展引申
1、課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),,提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法
①圓心為,,半徑為r的圓的標(biāo)準(zhǔn)方程為:
圓心在原點(diǎn)時(shí),半徑為r的圓的標(biāo)準(zhǔn)方程為:
②已知圓的方程是,,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:
2,、分層作業(yè)
(a)鞏固型作業(yè):教材p81—82:(習(xí)題7、6)1,,2,,4
(b)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程
3、激發(fā)新疑
問(wèn)題七
1,、把圓的標(biāo)準(zhǔn)方程展開(kāi)后是什么形式,?
2、方程表示什么圖形,?
在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,,舊的問(wèn)題解決了,,新的問(wèn)題又產(chǎn)生了、在知識(shí)的拓展中再次掀起學(xué)生探究的熱情,、另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備,、
以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),,我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):
橫向闡述教學(xué)設(shè)計(jì)
(一)突出重點(diǎn)抓住關(guān)鍵突破難點(diǎn)
求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心,、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,,在突出重點(diǎn)的同時(shí)突破了難點(diǎn),、
第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),,學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,,激發(fā)學(xué)生的求知欲,,同時(shí)我借助多媒體課件的演示,,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,,從而消除畏難情緒,,增強(qiáng)了信心、最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五,、這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),,形成了方法,,難點(diǎn)自然突破、
(二)學(xué)生主體教師主導(dǎo)探究主線
本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,,環(huán)環(huán)相扣,,使學(xué)生的探究活動(dòng)貫穿始終、從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引,、我的指導(dǎo)下,,由學(xué)生探究完成的、另外,,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),,分別是問(wèn)題二和問(wèn)題四的第三問(wèn),,要求學(xué)生分組討論,,合作交流,為學(xué)生設(shè)立充分的探究空間,,學(xué)生在交流成果的過(guò)程中,,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo),、側(cè)面幫助,、不斷肯定下順利完成了探究活動(dòng)并走向成功,,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,,高效的完成本節(jié)的學(xué)習(xí)任務(wù),、
(三)培養(yǎng)思維提升能力激勵(lì)創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力,、在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,,使能力與知識(shí)的形成相伴而行,、
以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),,具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,,向生成性課堂進(jìn)行轉(zhuǎn)變,、最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,,發(fā)揮我們的創(chuàng)造性,,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”,。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇十
尊敬的各位評(píng)委,、老師:
您們好,!
今天我說(shuō)課的內(nèi)容是人教版高二第二冊(cè)(上)第七章第三節(jié)第4課時(shí):“點(diǎn)到直線的距離”.
下面根據(jù)我寫的教案,把我對(duì)本節(jié)課的教材分析,、教學(xué)方法和教學(xué)用具,、教學(xué)過(guò)程以及教學(xué)評(píng)價(jià)等方面的認(rèn)識(shí)做一個(gè)說(shuō)明.敬請(qǐng)各位專家多提寶貴意見(jiàn).
1、教材的地位和作用
“點(diǎn)到直線的距離”是在學(xué)生學(xué)習(xí)直線方程的基礎(chǔ)上,,進(jìn)一步研究?jī)芍本€位置關(guān)系的一節(jié)內(nèi)容,,我們知道兩條直線相交后,進(jìn)一步的量化關(guān)系是角度,,而兩條直線平行后,,進(jìn)一步的量化關(guān)系是距離,而平行線間的距離是通過(guò)點(diǎn)到直線距離來(lái)解決的.此外在研究直線與圓的位置關(guān)系,、曲線上的點(diǎn)到直線的距離以及解析幾何中有關(guān)三角形面積的計(jì)算等問(wèn)題時(shí),,都要涉及點(diǎn)到直線的距離.所以“點(diǎn)到直線的距離公式”是平面解析幾何的一個(gè)重要知識(shí)點(diǎn).由于這一節(jié)是直線內(nèi)容的結(jié)尾部分,學(xué)生已經(jīng)具備直線的有關(guān)知識(shí)(如交點(diǎn),、垂直,、向量、三角形等),,因此,,一方面公式的推導(dǎo)成為可能,,另一方面公式的推導(dǎo)也是檢驗(yàn)學(xué)生是否真正掌握所學(xué)知識(shí)點(diǎn)的一個(gè)很好的課題.通過(guò)公式推導(dǎo)的獲得,可以培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,,以及自主探究和合作學(xué)習(xí)的能力.
2教學(xué)目標(biāo)分析
我確定教學(xué)目標(biāo)的依據(jù)有以下三條:
(1)教學(xué)大綱、考試大綱的要求
(2)新教材的特點(diǎn)
(3)所教學(xué)生的實(shí)際情況
教學(xué)目標(biāo)包括:知識(shí),、能力,、德育等方面的內(nèi)容.
“點(diǎn)到直線的距離公式”是平面解析幾何重要的基礎(chǔ)知識(shí),,也是教學(xué)大綱和考試大綱要求掌握的一個(gè)知識(shí)點(diǎn).按照大綱“在傳授知識(shí)的同時(shí),滲透數(shù)學(xué)思想方法,,培養(yǎng)學(xué)生數(shù)學(xué)能力”的教學(xué)要求,,結(jié)合新教材向量的引入,又根據(jù)所帶班級(jí)學(xué)生基礎(chǔ)和素質(zhì)教好的情況,,我把本節(jié)課的教學(xué)目標(biāo)確定為:
(1)讓學(xué)生理解點(diǎn)到直線距離公式的推導(dǎo)思想,,掌握點(diǎn)到直線距離公式及其應(yīng)用,會(huì)用點(diǎn)到直線距離求兩平行線間的距離,;
(2)通過(guò)推導(dǎo)公式方法的發(fā)現(xiàn),,培養(yǎng)學(xué)生觀察、思考,、分析,、歸納等數(shù)學(xué)能力;在推導(dǎo)過(guò)程中,滲透數(shù)形結(jié)合,、轉(zhuǎn)化(或化歸)等數(shù)學(xué)思想以及特殊與一般的方法,;
(3)通過(guò)本節(jié)學(xué)習(xí),引導(dǎo)學(xué)生用聯(lián)系與轉(zhuǎn)化的觀點(diǎn)看問(wèn)題,,體驗(yàn)在探索問(wèn)題的過(guò)程中獲得的成功感.
3,、教學(xué)重點(diǎn):點(diǎn)到直線距離公式的推導(dǎo)和應(yīng)用.
教學(xué)難點(diǎn):發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法.
1、教學(xué)方法的選擇
(1)指導(dǎo)思想:在“以生為本”理念的指導(dǎo)下,,充分體現(xiàn)“教師為主導(dǎo),,學(xué)生為主體”.
(2)教學(xué)方法:?jiǎn)栴}解決法、討論法等.
本節(jié)課的任務(wù)主要是公式推導(dǎo)思路的獲得和公式的推導(dǎo)及應(yīng)用.我選擇的是問(wèn)題解決法,、討論法等.通過(guò)一系列問(wèn)題,創(chuàng)造思維情境,,通過(guò)師生互動(dòng),,讓學(xué)生體驗(yàn)、探究,、發(fā)現(xiàn)知識(shí)的形成和應(yīng)用過(guò)程,,以及思考問(wèn)題的方法,促進(jìn)思維發(fā)展,;學(xué)生自主學(xué)習(xí),,分工合作,使學(xué)生真正成為教學(xué)的主體.
2,、教學(xué)用具的選用
在選用教學(xué)用具時(shí),,我考慮到,在本節(jié)課的公式推導(dǎo)和例題求解中思路較多,,所以采用了計(jì)算機(jī)多媒體和實(shí)物投影儀作為輔助教具.它可以將數(shù)學(xué)問(wèn)題形象,、直觀顯示,便于學(xué)生思考,,實(shí)物投影儀展示學(xué)生不同解題方案,,提高課堂效率.
“數(shù)學(xué)是思維的體操”,一題多解可以培養(yǎng)和提高學(xué)生思維的靈活性,,及分析問(wèn)題和解決問(wèn)題的能力.課程標(biāo)準(zhǔn)指出,,教學(xué)中應(yīng)注意溝通各部分內(nèi)容之間的聯(lián)系,通過(guò)類比,、聯(lián)想,、知識(shí)的遷移和應(yīng)用等方式,使學(xué)生體會(huì)知識(shí)間的有機(jī)聯(lián)系,,感受數(shù)學(xué)的整體性.課標(biāo)又指出,鼓勵(lì)學(xué)生積極參與教學(xué)活動(dòng).為此,,在具體教學(xué)過(guò)程中,,把本節(jié)課分為以下:“創(chuàng)設(shè)情境提出問(wèn)題——自主探索推導(dǎo)公式——變式訓(xùn)練學(xué)會(huì)應(yīng)用——學(xué)生小結(jié)教師點(diǎn)評(píng)——課外練習(xí)鞏固提高”五個(gè)環(huán)節(jié)來(lái)完成.下面對(duì)每個(gè)環(huán)節(jié)進(jìn)行具體說(shuō)明.
(一)[創(chuàng)設(shè)情境提出問(wèn)題]
1、這一環(huán)節(jié)要解決的主要問(wèn)題是:
創(chuàng)設(shè)情境,,引導(dǎo)學(xué)生分析實(shí)際問(wèn)題,,由實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,揭示本課任務(wù).同時(shí)激發(fā)學(xué)生學(xué)習(xí)興趣,,培養(yǎng)學(xué)生數(shù)學(xué)建模能力.
2、具體教學(xué)安排:
多媒體顯示實(shí)例,,電信局線路問(wèn)題,,實(shí)際怎樣解決?能否轉(zhuǎn)化為解析幾何問(wèn)題,?
學(xué)生很快想到建立坐標(biāo)系.如何建立坐標(biāo)系,?建系不同,點(diǎn)和直線方程不同,,用點(diǎn)的坐標(biāo)和直線方程如何解決距離問(wèn)題,,由此引出本課課題“點(diǎn)到直線的距離”.
(二)[自主探索推導(dǎo)公式]
1、這一環(huán)節(jié)要解決的主要問(wèn)題是:
充分發(fā)揮學(xué)生的主體作用,,引導(dǎo)學(xué)生發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法,,并推導(dǎo)出公式.在公式的推導(dǎo)過(guò)程中,圍繞兩條線索:明線為知識(shí)的學(xué)習(xí),,暗線為特殊與一般的邏輯方法以及轉(zhuǎn)化,、數(shù)形結(jié)合等數(shù)學(xué)思想的滲透.
2、具體教學(xué)安排:
2.1學(xué)生初探解決特例
首先提出問(wèn)題:怎樣用解析幾何方法求解點(diǎn)到直線距離,?由于字母的運(yùn)算有難度,,引導(dǎo)學(xué)生從直線的特殊情況入手,這樣問(wèn)題比較容易解決.學(xué)生應(yīng)該能想到,,如果直線是坐標(biāo)軸或平行坐標(biāo)軸的時(shí)候問(wèn)題比較容易解決,,給予學(xué)生肯定的評(píng)價(jià).學(xué)生自己完成推導(dǎo)過(guò)程,選兩名學(xué)生進(jìn)行板演.
2.2師生互動(dòng)獲取思路
特殊情況已經(jīng)解決,,引導(dǎo)學(xué)生考慮一般直線的情況.通過(guò)學(xué)生思考,,教師收集得到思路一:過(guò)p作pq ⊥ l于q點(diǎn),根據(jù)點(diǎn)斜式寫出直線pq方程,,由pq與l聯(lián)立方程組解得q點(diǎn)坐標(biāo),,然后利用兩點(diǎn)距離公式求得.
我及時(shí)評(píng)價(jià)這種方法思路自然,是一種解決辦法.為了拓展學(xué)生思維,,我們根據(jù)已有的知識(shí)和經(jīng)驗(yàn),,還有什么辦法能解決,?為此我啟發(fā)學(xué)生,提出問(wèn)題:
(1)求線段長(zhǎng)度可以構(gòu)造圖形嗎,?
(2)什么圖形,?如何構(gòu)造?(學(xué)生經(jīng)過(guò)討論,,得到構(gòu)造三角形,,把線段放在直角三角形中.)但是如何構(gòu)造又是一個(gè)難點(diǎn).
(3)第三個(gè)頂點(diǎn)在什么位置?
(4)特殊情況與一般情況有聯(lián)系嗎,?
學(xué)生通過(guò)觀察,、討論會(huì)提出第三個(gè)頂點(diǎn)的不同位置:可能在直線l與x軸的交點(diǎn)m或與y軸交點(diǎn)n;或根據(jù)特殊情況的證法提示,,過(guò)p點(diǎn)作x,、y軸的平行線與直線l的交點(diǎn)r、s.或同時(shí)做x,、y軸平行線.這樣就收集到思路二,、三、四.
三種思路已經(jīng)有了,,它們的共性是什么?學(xué)生能觀察出都在三角形中.我繼續(xù)引導(dǎo):能不能不構(gòu)造三角形,?而是其它數(shù)學(xué)相關(guān)量,?我們剛學(xué)習(xí)了向量知識(shí),能否用向量知識(shí)解決問(wèn)題呢,?(由于在前面學(xué)習(xí)的向量知識(shí)中,,向量的模可以表示兩點(diǎn)之間的距離,,而證明兩直線垂直時(shí)也已經(jīng)用到向量知識(shí),,法向量又是本節(jié)課后閱讀材料,本班學(xué)生基礎(chǔ)和素質(zhì)較好,,在學(xué)習(xí)直線方向向量時(shí)已經(jīng)布置閱讀).
提出問(wèn)題:線段的長(zhǎng)度就是對(duì)應(yīng)向量的模,,那么如何求得向量pq的模呢?根據(jù)實(shí)際情況提示一方面pq的方向完全由直線的方向而定(與法向量共線),,另一方面pq的長(zhǎng)度又與點(diǎn)p有關(guān),,它的長(zhǎng)度又如何控制下來(lái)?所以有思路五,,由師生一起分析,,取λλ(a, b )法向量n=,而pq = n,,以下只要求得,,就可以得到距離.
2.3分工合作自主完成
學(xué)生提出了不同的解決方案,,究竟哪種好呢?如果讓每位學(xué)生都去用不同解法探求,,在課堂上時(shí)間顯然是不允許的,,但教學(xué)中又要培養(yǎng)學(xué)生的運(yùn)算能力,如何解決這種矛盾呢,?現(xiàn)代教育要求學(xué)生要有自主學(xué)習(xí),、合作學(xué)習(xí)能力,因此我叫學(xué)生對(duì)五種思路進(jìn)行分組練習(xí).
在學(xué)生求解過(guò)程中,,我巡視,,觀看學(xué)生解題,了解情況,,根據(jù)課堂時(shí)間的實(shí)際情況,,選取做好的學(xué)生的解題過(guò)程用實(shí)物投影儀顯示.這樣不僅能讓全體學(xué)生看到不同思路的具體解法,還能得出最佳解題方案,,接著我展示最佳解題方案的規(guī)范步驟.目的讓學(xué)生有良好的規(guī)范的書(shū)面表達(dá)習(xí)慣,,起到教師典范的作用.
2.4公式小結(jié)概括提升
公式推導(dǎo)出,學(xué)生有了成功的喜悅.我也給予了肯定.但是由于公式的結(jié)果是一般情況得出的,,而對(duì)于當(dāng)a = 0,,或b = 0時(shí),點(diǎn)在直線上是否成立,,它們與當(dāng)ab ≠ 0時(shí),,點(diǎn)在直線外有什么關(guān)系?這并沒(méi)有驗(yàn)證.而我們要求學(xué)生考慮問(wèn)題要全面,,為此我提出提問(wèn):①上式是由條件下當(dāng)ab ≠ 0時(shí)得出,,對(duì)當(dāng)a = 0,或b = 0時(shí)成立嗎,?②點(diǎn)p在直線l上成立嗎,?③公式結(jié)構(gòu)特點(diǎn)是什么?用公式時(shí)直線方程是什么形式,?通過(guò)學(xué)生的討論,,使學(xué)生了解公式適用的范圍:任意點(diǎn)、任意直線.同時(shí)體現(xiàn)整體認(rèn)識(shí)和分類討論思想.
依據(jù)新課程的理念,,教師要?jiǎng)?chuàng)造性地使用教材.在公式的推導(dǎo)過(guò)程中,,我做了和教材不同的處理方法:(1)先特殊后一般的證法,(2)多角度構(gòu)造三角形,,(3)知識(shí)聯(lián)系,,向量解決.目的是讓學(xué)生在考慮問(wèn)題時(shí)有特殊到一般的意識(shí),符合學(xué)生認(rèn)知規(guī)律,,使問(wèn)題的解決循序漸進(jìn).向量是新教材內(nèi)容,,是一種很好的數(shù)學(xué)工具,,和解析幾何結(jié)合應(yīng)用是現(xiàn)在新教材知識(shí)的交匯點(diǎn).而多角度考慮問(wèn)題,發(fā)散學(xué)生思維.
(三)[變式訓(xùn)練學(xué)會(huì)應(yīng)用]
1,、這一環(huán)節(jié)解決的主要問(wèn)題是:
通過(guò)練習(xí),,熟悉公式結(jié)構(gòu),記憶并簡(jiǎn)單應(yīng)用公式.通過(guò)例題的不同解法,,進(jìn)一步讓學(xué)生體會(huì)轉(zhuǎn)化(或化歸)的數(shù)學(xué)思想.
2,、具體教學(xué)安排:
由學(xué)生完成下列練習(xí):
(1)解決課堂提出的實(shí)際問(wèn)題.(學(xué)生口答)
(2)求點(diǎn)p0(-1,2)到下列直線的距離:
①3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1
設(shè)計(jì)說(shuō)明:練習(xí)1的設(shè)計(jì)解決了上課開(kāi)始提出的實(shí)際問(wèn)題.練習(xí)2的設(shè)計(jì)故意選特殊直線和非直線方程一般式,主要強(qiáng)調(diào)在公式應(yīng)用時(shí),,直線方程是一般式,,應(yīng)用公式的準(zhǔn)確性.
例題(3)求平行線2x-7y+8=0和2x-7y-6=0的距離.
我選取的是課本例題,課本只有一種具體點(diǎn)的解法.我通過(guò)本節(jié)課的學(xué)習(xí),,讓學(xué)生對(duì)知識(shí)從深度和廣度上進(jìn)行挖掘.通過(guò)幾何畫(huà)板的演示,,讓學(xué)生直觀看到思考問(wèn)題的方法.除了選擇直線上的點(diǎn),還可以選取原點(diǎn),,求它到兩條直線的距離,,然后作和.或者選取直線外的點(diǎn)p,求它到兩條直線的距離,,然后作差.由特殊點(diǎn)到任意點(diǎn),,由特殊直線到任意直線,從而延伸出兩平行線間的距離.目的是在整個(gè)過(guò)程中,,讓學(xué)生注意體會(huì)解題方法中的靈活性以及轉(zhuǎn)化等數(shù)學(xué)思想方法.
(四)[學(xué)生小結(jié)教師點(diǎn)評(píng)]
1,、這一環(huán)節(jié)解決的主要問(wèn)題和達(dá)到的目的是:
通過(guò)師生共同小結(jié),鞏固所學(xué)知識(shí),,提煉用到的解決問(wèn)題的方法,其中蘊(yùn)涵的數(shù)學(xué)思想方法,,培養(yǎng)學(xué)生歸納概括能力.
2,、具體教學(xué)安排:
本節(jié)課小結(jié)主要由學(xué)生完成知識(shí)總結(jié),通過(guò)學(xué)習(xí)知識(shí)所體驗(yàn)到的數(shù)學(xué)思想方法,,由學(xué)生總結(jié)和相互補(bǔ)充,,教師適當(dāng)點(diǎn)評(píng),加以經(jīng)驗(yàn)總結(jié).
(五)[課外練習(xí)鞏固提高]
1課本習(xí)題7.3的第13題—16題,;
2 總結(jié)寫出點(diǎn)到直線距離公式的多種方法.
設(shè)計(jì)說(shuō)明:作業(yè)1是課本習(xí)題,,檢查學(xué)生所學(xué)知識(shí)掌握的程度.作業(yè)2是根據(jù)課堂分析,讓學(xué)生總結(jié)公式推導(dǎo)的方法.除了課堂上想到的方法還可以繼續(xù)思考,,比如在用兩點(diǎn)距離公式整體代換等方法,,發(fā)揮學(xué)生學(xué)習(xí)的自主性和思維的廣闊性.
新課程標(biāo)準(zhǔn)提出要加強(qiáng)過(guò)程性評(píng)價(jià),因而在具體教學(xué)過(guò)程中,,我對(duì)于學(xué)生的語(yǔ)言與行為的表現(xiàn),,及時(shí)給予肯定性的表?yè)P(yáng)和鼓勵(lì),;學(xué)生思維暴露出問(wèn)題時(shí)及時(shí)評(píng)價(jià),矯正思維方向,,調(diào)整教學(xué)思路,;為了獲得后反饋信息,布置作業(yè),,通過(guò)觀察學(xué)生完成作業(yè)情況,,了解學(xué)生在知識(shí)技能和數(shù)學(xué)方法方面的收獲和不足,指導(dǎo)我今后教學(xué).整個(gè)教學(xué)評(píng)價(jià)是在師生互動(dòng)中完成的.
以上是我對(duì)這節(jié)課的設(shè)計(jì),,懇請(qǐng)各位專家和老師批評(píng),、指正.
謝謝!
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇十一
1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用,。
概括地講,,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性,。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,,對(duì)已學(xué)習(xí)過(guò)的集合知識(shí)的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù),、數(shù)列,、三角函數(shù)、線形規(guī)劃,、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān),。許多問(wèn)題的解決都會(huì)借助一元二次不等式的解法。因此,,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,,體現(xiàn)出很大的工具作用。
2.教學(xué)目標(biāo)定位,。
根據(jù)教學(xué)大綱要求,、高考考試大綱說(shuō)明、新課程標(biāo)準(zhǔn)精神,、高一學(xué)生已有的知識(shí)儲(chǔ)備狀況和學(xué)生心理認(rèn)知特征,,我確定了四個(gè)層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識(shí)目標(biāo):熟練掌握一元二次不等式的兩種解法,,正確理解一元二次方程,、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),,培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法解決問(wèn)題的能力,,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),,通過(guò)對(duì)解不等式過(guò)程中等與不等對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),,向?qū)W生逐步滲透辨證唯物主義思想,。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,,學(xué)生自主探究,,交流討論,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神,。
3.教學(xué)重點(diǎn),、難點(diǎn)確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,,利用二次函數(shù)的圖象研究一元二次不等式的解法,。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,,并利用其關(guān)系解不等式即可,。因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,,關(guān)鍵是一元二次方程,、一元二次不等式和二次函數(shù)三者的關(guān)系。
數(shù)學(xué)是發(fā)展學(xué)生思維,、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,,在教學(xué)中,我們不僅要使學(xué)生獲得知識(shí),、提高解題能力,,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會(huì)學(xué)習(xí)、樂(lè)于學(xué)習(xí),,感受數(shù)學(xué)學(xué)科的人文思想,,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感,。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),,學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,,在本節(jié)課的教學(xué)過(guò)程中,,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),,學(xué)生探究——交流發(fā)現(xiàn),,組織開(kāi)展教學(xué)活動(dòng)。我設(shè)計(jì)了①創(chuàng)設(shè)情景——引入新課,,②交流探究——發(fā)現(xiàn)規(guī)律,,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣,、層層深入的教學(xué)環(huán)節(jié),,在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節(jié),。
1.創(chuàng)設(shè)情景——引入新課,。我們常說(shuō)“興趣是最好的老師”,長(zhǎng)期以來(lái),,學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)缺乏興趣,,甚至失去信心,一個(gè)重要的原因,,是老師在教學(xué)中不重視學(xué)生對(duì)學(xué)習(xí)的情感體驗(yàn),,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹(shù)立信心,,感受學(xué)習(xí)的樂(lè)趣,。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫(huà)一次函數(shù)圖象,、求一次方程和一次不等式的解為背景知識(shí)切入,,設(shè)置一個(gè)練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),,做好鋪墊,另一方面,,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè)體驗(yàn),,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容,。對(duì)于本題,,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,,畫(huà)出二次函數(shù)圖象來(lái)解答,。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),,相信學(xué)生畫(huà)出圖象應(yīng)該不成問(wèn)題,,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案,。以高考試題為背景引入新課,,可以提高學(xué)生興趣,抓住學(xué)生眼球,,吸引學(xué)生注意力,,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中,。
2.探究交流——發(fā)現(xiàn)規(guī)律,。從特殊到一般是我們發(fā)現(xiàn)問(wèn)題、尋求規(guī)律,、揭示問(wèn)題本質(zhì)最常用的方法之一,。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,,學(xué)生由于熟知二次函數(shù)圖象,,求解應(yīng)該不會(huì)有太大的問(wèn)題。在這個(gè)過(guò)程中,,教師要啟發(fā)引導(dǎo)學(xué)生注意對(duì)比兩題的異同,,組織引導(dǎo)學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫(huà)圖求解,。然后達(dá)成共識(shí),,如果二次項(xiàng)系數(shù)為負(fù)數(shù)時(shí),先做等價(jià)轉(zhuǎn)化,,把二次項(xiàng)系數(shù)化為正數(shù)再解,,課本19頁(yè)例3、例4作為題組(二),,繼續(xù)讓學(xué)生用上面的圖象法,,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1,、例2對(duì)應(yīng)方程都有兩個(gè)不等實(shí)根,,例3對(duì)應(yīng)方程有兩相等實(shí)根,例4對(duì)應(yīng)方程無(wú)實(shí)根),。兩個(gè)題組的練習(xí)之后,,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論,。前面兩個(gè)題組的四個(gè)小題,,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊,、具體題目的結(jié)論做一般化總結(jié),,與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應(yīng)該水到渠成。至此,,學(xué)生可以感受到,,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根,。③根據(jù)①后的二次不等式的符號(hào)寫出解集即可,,必要時(shí)也可以結(jié)合圖象寫解集,。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法),。
4.訓(xùn)練小結(jié)——鞏固深化,。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習(xí),,完成課本21頁(yè)練習(xí)1-4題,。本環(huán)節(jié)請(qǐng)不同層次的學(xué)生在黑板上書(shū)寫解題過(guò)程,之后師生共同糾正問(wèn)題,,規(guī)范解題過(guò)程的書(shū)寫,。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,,又應(yīng)關(guān)注學(xué)生的個(gè)體差異,。體現(xiàn)分類推進(jìn),分層教學(xué)的原則,。為此,,我又設(shè)計(jì)了一個(gè)提高練習(xí)題組,共有三道備選題目,,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,,取得更進(jìn)一步的提高。
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究,、關(guān)注學(xué)生的個(gè)性發(fā)展,,鼓勵(lì)學(xué)生勇于提出問(wèn)題,培養(yǎng)學(xué)生思維的批評(píng)性,。在課堂上學(xué)生往往會(huì)提出讓老師感到“意外”的問(wèn)題,,我在平時(shí)的教學(xué)中重視對(duì)“課堂意外預(yù)案”的探索和思考,備課時(shí)盡量設(shè)想課堂中可能會(huì)出現(xiàn)的各種情況,,做到有備無(wú)患,,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地,。結(jié)合以往經(jīng)驗(yàn),,在本節(jié)課,我提出兩個(gè)“意外預(yù)案”,。
1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時(shí),,可能會(huì)問(wèn)到轉(zhuǎn)化為不等式組{
或{
求解對(duì)不對(duì)。學(xué)生提出的問(wèn)題,,想法非常好,,應(yīng)給予肯定和鼓勵(lì),這與下節(jié)簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),,是解不等式的另一種解法——等價(jià)轉(zhuǎn)化法,,不在本節(jié)課之列。
2.根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類的不等式的時(shí)候,,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,,有可能會(huì)出現(xiàn)將不等式轉(zhuǎn)化為不等式組{
來(lái)求解的錯(cuò)誤做法,教師要關(guān)注學(xué)生,,及時(shí)發(fā)現(xiàn)問(wèn)題并給予糾正,,指出上面的轉(zhuǎn)化不是等價(jià)轉(zhuǎn)化。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇十二
1,、本節(jié)教材的地位和作用
“三垂線定理”是立體幾何的中重要定理,它是在研究了空間直線和平面垂直關(guān)系的基礎(chǔ)上研究空間兩條直線垂直關(guān)系的一個(gè)重要定理。它既是線面垂直關(guān)系的一個(gè)應(yīng)用,又為以后學(xué)習(xí)面面垂直,研究空間距離,、空間角、多面體與旋轉(zhuǎn)體的性質(zhì)奠定了基礎(chǔ),,同時(shí)這節(jié)課也是培養(yǎng)高一學(xué)生空間想象能力和邏輯思維能力的重要內(nèi)容,,對(duì)培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力都有重要意義。
2,、教學(xué)內(nèi)容
本節(jié)課的主要內(nèi)容是三垂線定理的引出,、證明和初步應(yīng)用。對(duì)定理的引出改變了教材中直接給出定理的做法。通過(guò)討論空間直線與平面內(nèi)直線垂直的問(wèn)題讓學(xué)生逐步發(fā)現(xiàn)定理,。這樣,學(xué)生感到自然,,好接受。對(duì)教材中的例題有所增加,處理方式也有適當(dāng)改變。
3,、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求,,本節(jié)教材的特點(diǎn)和高一學(xué)生對(duì)空間圖形的認(rèn)知特點(diǎn),,我把本節(jié)課的教學(xué)目的確定為:
(1)理解三垂線定理的證明,準(zhǔn)確把握“空間三線”垂直關(guān)系的實(shí)質(zhì),。
(2)領(lǐng)會(huì)應(yīng)用三垂線定理解題的一般步驟,,初步學(xué)會(huì)應(yīng)用定理解決相關(guān)問(wèn)題。
(3)通過(guò)教學(xué)進(jìn)一步培養(yǎng)學(xué)生的空間想象能力和邏輯思維能力。
(4)進(jìn)行辨證唯物主義思想教育、數(shù)學(xué)應(yīng)用意識(shí)教育和數(shù)學(xué)審美教育,,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,。
4,、教學(xué)重點(diǎn)、難點(diǎn),、關(guān)鍵
對(duì)高二學(xué)生來(lái)說(shuō),,空間概念正在形成,因此本節(jié)課的重點(diǎn)是學(xué)生通過(guò)模型演示,、推理論證,,領(lǐng)會(huì)三垂線定理的實(shí)質(zhì),正確認(rèn)識(shí)“空間三線”的垂直關(guān)系,;同時(shí)掌握“線面垂直法”研究空間直線關(guān)系的思想方法,。本節(jié)教學(xué)難點(diǎn)是準(zhǔn)確把握“空間三線”垂直關(guān)系的實(shí)質(zhì),,掌握應(yīng)用三垂線定理的一般步驟。領(lǐng)會(huì)定理實(shí)質(zhì)的關(guān)鍵是要認(rèn)識(shí)到平面內(nèi)一條直線與斜線及其在平面內(nèi)的射影確定的平面垂直,;應(yīng)用定理的關(guān)鍵是要找到平面的垂線,射影就可由垂足與斜足確定,問(wèn)題便會(huì)迎刃而解,。
建立模型,,啟發(fā)引導(dǎo),猜想論證,,學(xué)習(xí)應(yīng)用,,發(fā)展能力,。
讓學(xué)生動(dòng)手做模型,,教師演示指導(dǎo),,讓學(xué)生直觀地感受到空間線面、線線關(guān)系的變化;再在教師的引導(dǎo)下思考線面,、線線垂直關(guān)系存在的因果關(guān)系,逐步推理,,猜想命題,論證命題,,從而發(fā)現(xiàn)定理,,揭示定理的實(shí)質(zhì)。對(duì)定理的應(yīng)用,,只要求學(xué)生在理解定理的基礎(chǔ)上理清應(yīng)用定理證題的一般步驟,,學(xué)會(huì)證明一些簡(jiǎn)單問(wèn)題。
教學(xué)矛盾的主要方面是學(xué)生的學(xué),,學(xué)是中心,,會(huì)學(xué)是目的,因此在教學(xué)中不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí),。根據(jù)立體幾何的教學(xué)特點(diǎn),,本節(jié)課主要是教給學(xué)生“動(dòng)手做、動(dòng)腦想,、大膽猜,、嚴(yán)格證、多訓(xùn)練,、勤鉆研”的研討式學(xué)習(xí)方法,,這樣做增加了學(xué)生的參與機(jī)會(huì),增強(qiáng)了參與意識(shí),,教給了學(xué)生獲取知識(shí)的途徑,,思考問(wèn)題的方法,使學(xué)生真正能成了教學(xué)的主體,。也只有這樣做,,才能使學(xué)生“學(xué)”有新“思”,“思”有所“得”,,“練”有新“獲”,,學(xué)生才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的興趣,;也只有這樣做,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要,。
1,、(教學(xué)環(huán)節(jié))復(fù)習(xí)提問(wèn):
(1)線與平面垂直的定義?(2)線與平面垂直的判定,?
(3)什么叫平面的斜線,、斜線在平面上的射影?(學(xué)生回答,教師作圖1)
(設(shè)計(jì)意圖:為本節(jié)課的學(xué)習(xí)做好知識(shí)鋪墊和圖形準(zhǔn)備)
2,、(教學(xué)環(huán)節(jié))演示啟發(fā)
由以上復(fù)習(xí)可知,,平面的一條垂線垂直于平面內(nèi)的每一條直線,平面的斜線顯然不能垂直于平面內(nèi)的每一條直線,,那么平面的斜線在平面內(nèi)有垂線嗎,?有幾條?請(qǐng)同學(xué)們來(lái)做做看,。(教師引導(dǎo)學(xué)生用三角板和鉛筆在桌面上搭建模型)
通過(guò)以上實(shí)物操作的方法來(lái)表示平面的斜線在平面內(nèi)有垂線,,而且有無(wú)數(shù)條。引導(dǎo)學(xué)生進(jìn)一步思考,,斜線在平面內(nèi)的垂線與它在平面內(nèi)的射影有什么關(guān)系,?
結(jié)論:直線a與射影ao垂直
那么,我們?cè)谄矫鎯?nèi)找斜線的垂線時(shí)能否只找到與其射影垂直的直線,,換句話說(shuō),,平面內(nèi)的直線a與斜線po的射影ao垂直時(shí),a與斜線po垂直嗎,?
結(jié)論:根據(jù)觀察a⊥po,,為什么?
(設(shè)計(jì)意圖:這樣采用觀察,、猜想,、發(fā)現(xiàn)的方法引出定理比課本上直接給出定理顯得自然,學(xué)生好接受,,)
3,、(教學(xué)環(huán)節(jié))引導(dǎo)證明
觀察得來(lái)的結(jié)論,必須經(jīng)過(guò)嚴(yán)格證明才能確認(rèn),,我們把剛才的問(wèn)題寫出來(lái),,大家一起來(lái)證明一下。
把定理改為一道普通例題,,讓學(xué)生寫出證明過(guò)程
(設(shè)計(jì)意圖:讓學(xué)生養(yǎng)成嚴(yán)格論證問(wèn)題的習(xí)慣和正確的書(shū)寫格式,,培養(yǎng)學(xué)生思維的嚴(yán)密性)
4、揭示定理
這樣我們就找到了判定平面的一條斜線與平面的斜線垂直的方法:只要它與斜線的射影垂直即可,。以后我們?cè)谄矫鎯?nèi)做斜線的垂線,,只需做它射影的垂線即可。現(xiàn)在我們上面這道題用文字表述出來(lái):
三垂線定理平面內(nèi)的一條直線和這個(gè)平面的一條斜線垂直當(dāng)且僅當(dāng)它和這條斜線的射影垂直,。
高二數(shù)學(xué)三垂線定理說(shuō)課稿這就是著名的三垂線定理,它實(shí)質(zhì)是平面內(nèi)的直線與平面的斜線垂直的判定定理,。它集中反映了平面內(nèi)的一條直線,、平面的斜線、斜線在平面內(nèi)的射影這三者的關(guān)系。這個(gè)定理之所以著名,,不僅在于它給了我們一個(gè)證明線線垂直的重要方法,,為研究計(jì)算空間角,空間距離,,研究多面體和旋轉(zhuǎn)體的性質(zhì)奠定了基礎(chǔ),,而且這個(gè)定理的證明方法“線面垂直法”,也是一種非常重要的方法,。
5,、(教學(xué)環(huán)節(jié))定理的應(yīng)用
例1課本p155例1
例2課本p155例2
例3補(bǔ)充題:如圖正方體abcd—a1b1c1d1中求證:(1)bd1⊥ac
(2)bd1⊥b1c(3)bd1⊥平面ab1c
小結(jié):使用三垂線定理證題的一般步驟:一定定平面及平面內(nèi)的一條直線;
二找找平面的垂線,、斜線及其射影
三證證平面內(nèi)一直線與斜線垂直
(設(shè)計(jì)意圖:通過(guò)一道簡(jiǎn)單例題的推證,,總結(jié)出使用定理的方法,為使學(xué)生形成解題技能打好基礎(chǔ))
6,、(教學(xué)環(huán)節(jié))小結(jié)
本節(jié)課重點(diǎn)學(xué)習(xí)了三垂線定理,,應(yīng)學(xué)會(huì)按“一定、二找,、三證”
的步驟解決問(wèn)題,。(設(shè)計(jì)意圖:使學(xué)生對(duì)本節(jié)課所學(xué)知識(shí)的結(jié)構(gòu)有一個(gè)清晰的認(rèn)識(shí),能抓住重點(diǎn)進(jìn)行課后復(fù)習(xí),。)
7,、(教學(xué)環(huán)節(jié))作業(yè)布置練習(xí):p157,題3,、5作業(yè):p156,,題1、2,、4
思考題:在正方體abcd—a1b1c1d1的各頂點(diǎn)連線中,,與bd1垂直的直線有那些?(設(shè)計(jì)意圖:使學(xué)生鞏固本節(jié)課所學(xué)知識(shí),,培養(yǎng)學(xué)生自覺(jué)學(xué)習(xí)的習(xí)慣,,同時(shí)給學(xué)有余力的學(xué)生留出自由發(fā)展的空間)
五、說(shuō)板書(shū)設(shè)計(jì):塊為定理的板書(shū)及定理的證明,,中間第二塊為舉例講解,,右邊第三塊為學(xué)生練習(xí)和課堂小結(jié)。這樣的板書(shū)簡(jiǎn)明清楚,,重點(diǎn)突出,,加深學(xué)生對(duì)重點(diǎn)知識(shí)的理解和掌握,同時(shí)便于記憶,,有利于提高教學(xué)效果,。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇十三
本知識(shí)來(lái)自于人教版高中數(shù)學(xué)必修3第一章第二節(jié),,著好似一章新知識(shí),該部分知識(shí)被安排在五本必修課本中的第三本,,處于高中知識(shí)的過(guò)度階段,。而在上課前,無(wú)論是老師還是學(xué)生,,都會(huì)有一些相應(yīng)的問(wèn)題,,下面兩個(gè)問(wèn)題就是兩個(gè)比較有代表性的問(wèn)題。
1,、為什么要在數(shù)學(xué)中教語(yǔ)句?
2,、學(xué)語(yǔ)句不上機(jī),是不是紙上談兵?
現(xiàn)在我們來(lái)好好研究一下這兩個(gè)問(wèn)題,。首先,,學(xué)語(yǔ)句是為了算法思想,而基本算法語(yǔ)句 是算法思想的直觀表現(xiàn),,是程序框圖的語(yǔ)言形式,,所以學(xué)語(yǔ)句是進(jìn)一步體會(huì)算法思想,進(jìn)一步提高邏輯思維能力,,提高思辨能力和實(shí)辨能力,。(有條件上機(jī)的進(jìn)行實(shí)踐,沒(méi)條件上機(jī)的進(jìn)行思辨,,在實(shí)踐中思辨,,在思辨中實(shí)踐,提高學(xué)生的學(xué)習(xí)興趣,,增加學(xué)生的實(shí)踐機(jī)會(huì)),。所以,學(xué)語(yǔ)句不上機(jī),,不是紙上談兵,。
在學(xué)習(xí)基本算法語(yǔ)句之前(本節(jié)課主要講輸入語(yǔ)句、輸出語(yǔ)句與賦值語(yǔ)句),,學(xué)生已在本章知識(shí)的第一節(jié)學(xué)習(xí)了算法與程序框圖的基本思想與定義,,而且該部分與一些初等函數(shù)知識(shí)相掛鉤,并且相互結(jié)合學(xué)習(xí),。在此之前,,學(xué)生在必修1已經(jīng)對(duì)初等函數(shù)知識(shí)有了相應(yīng)的學(xué)習(xí)與了解。
該部分知識(shí)主要采取說(shuō)教法進(jìn)行講授,,通過(guò)學(xué)生所熟悉的生活問(wèn)題引入課堂,,為公式學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)之間的距離,,激發(fā)學(xué)生的求知欲,,調(diào)動(dòng)學(xué)生主體參與的積極性,。
1,、知識(shí)目標(biāo):
(1)初步了解基本算法語(yǔ)句中的輸入,、輸出、賦值語(yǔ)句;
(2)理解算法語(yǔ)句是將算法的各種控制結(jié)構(gòu)變成計(jì)算機(jī)能夠理解的程序語(yǔ)言;
2,、情感目標(biāo);
(1)通過(guò)對(duì)三種語(yǔ)句的實(shí)現(xiàn),,發(fā)展有條理思考,表達(dá)能力,,邏輯思維能力;
(2)學(xué)習(xí)算法語(yǔ)句,,幫助學(xué)生利用計(jì)算機(jī)軟件實(shí)現(xiàn)算法,活躍思維,,提高數(shù)學(xué)素質(zhì),。
重點(diǎn):輸入語(yǔ)句、輸出語(yǔ)句,、賦值語(yǔ)句的基本結(jié)構(gòu)特點(diǎn)及用法;
難點(diǎn):輸入語(yǔ)句,、輸出語(yǔ)句、賦值語(yǔ)句的意義及作用,。
例1,、引入生活中的例子:“讓一個(gè)學(xué)生去辦公室?guī)臀胰ノ业霓k公室泡一杯茶”,通過(guò)這個(gè)例子來(lái)聽(tīng)到學(xué)生,,讓他們了解其實(shí)計(jì)算機(jī)與人的辦事思維是一樣的,。在這個(gè)過(guò)程中,首先我會(huì)告訴學(xué)生:辦公室的位置,、辦公桌的地點(diǎn),、茶葉、茶杯等信息,,即將這些信息輸入到學(xué)生的大腦(該過(guò)程等價(jià)于計(jì)算機(jī)的輸入過(guò)程);然后學(xué)生開(kāi)始行動(dòng),,將茶葉、水放入茶杯(該過(guò)程等價(jià)于計(jì)算機(jī)的賦值過(guò)程);最后學(xué)生將完成的茶水給我(該過(guò)程等價(jià)于計(jì)算機(jī)的輸出過(guò)程),。
通過(guò)該例子的引入,,使學(xué)生對(duì)本次課堂所要學(xué)習(xí)的知識(shí)有初步的了解,使他們?cè)诮邮苷降挠?jì)算機(jī)基本語(yǔ)句之前對(duì)該部分知識(shí)有一個(gè)簡(jiǎn)單的邏輯思維,,從而使他們更容易接受該部分知識(shí),,最后達(dá)到減輕學(xué)習(xí)知識(shí)難度的目的,也為后面的學(xué)習(xí)做鋪墊,。
例2,、用描點(diǎn)法做函數(shù)y?x3?3x2?24x?30的圖像時(shí),需要求出函數(shù)的自變量和函數(shù)的一組對(duì)應(yīng)值,,編寫程序,,分別計(jì)算出當(dāng)x??5,,?4,?3,,?2,,?1,0, 1, 2, 3, 4, 5時(shí)的函數(shù)值,。
(現(xiàn)在教學(xué)生來(lái)泡茶)算法分析:
根據(jù)題意,,對(duì)于每一個(gè)輸入的自變量的值,都要輸出相應(yīng)的函數(shù)值,,寫出算法步驟如下: 第一步,,輸入一個(gè)自變量x的值。(計(jì)算機(jī)簡(jiǎn)單算法語(yǔ)句的輸入過(guò)程,,泡茶第一步) 第二部,,計(jì)算y?x3?3x2?24x?30。
第三部,,輸出y,。(計(jì)算機(jī)簡(jiǎn)單算法語(yǔ)句的輸出過(guò)程,泡茶第三部)
下面,,結(jié)合上節(jié)課所學(xué)的知識(shí),,復(fù)習(xí)并鞏固上節(jié)課所學(xué)的程序框圖,將上面的算法分析用程序框圖表示出來(lái),。
顯然,,這是一個(gè)由順序結(jié)構(gòu)構(gòu)成的算法,按照程序框圖中流程線的方向,,引導(dǎo)學(xué)生,,得出相應(yīng)的算法語(yǔ)句,最后得出輸入語(yǔ)句,、輸出語(yǔ)句,、賦值語(yǔ)句的定義。
高二數(shù)學(xué)說(shuō)課稿 高中數(shù)學(xué)說(shuō)課稿篇十四
本節(jié)課人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修3第三章概率第二節(jié)古典概型的第一課時(shí),。古典概型是在隨機(jī)事件的概率之后,,幾何概型之前進(jìn)行教學(xué)的。古典概型是一種理想的數(shù)學(xué)模型,,也是一種最基本的概率模型,,它的引入避免了大量的重復(fù)試驗(yàn),而且得到的是概率準(zhǔn)確值,,有利于理解概率的概念,,有利于計(jì)算一些簡(jiǎn)單事件的概率,有利于解釋生活中的一些現(xiàn)象與問(wèn)題,。而接下來(lái)要學(xué)習(xí)的幾何概型與古典概型有很多相通之處,,學(xué)好古典概型可以為學(xué)習(xí)幾何概型奠定基礎(chǔ),,起到了承前啟后的作用。古典概型在高等數(shù)學(xué)中概率論中也占有相當(dāng)重要的地位,,為學(xué)生學(xué)習(xí)高等數(shù)學(xué)做好銜接和鋪墊,。
認(rèn)知分析:
學(xué)生已經(jīng)了解概率的意義,掌握了概率的基本性質(zhì),,知道了互斥事件和對(duì)立事件的概率公式,,這三者形成了學(xué)生思維的“最近發(fā)展區(qū)”,。 此時(shí)學(xué)生們并沒(méi)有學(xué)習(xí)排列組合的知識(shí),。隨機(jī)事件的概率在教材中主要通過(guò)觀察和試驗(yàn)的方法,得到一些事件的概率估計(jì),,學(xué)生的認(rèn)知水平更多的停留在感性認(rèn)識(shí)的層面,,還未上升到理性認(rèn)識(shí)的高度。
能力分析:
學(xué)生已經(jīng)具備了一定的歸納,、猜想能力,,但數(shù)學(xué)的理性的思維能力和應(yīng)用意識(shí)仍需提高。 但對(duì)知識(shí)的理解和方法的掌握在一些細(xì)節(jié)上不完備,,反映在解題中就是思維不慎密,,過(guò)程不完整,解決問(wèn)題的能力還略顯單薄,。
情感分析:
由于本章開(kāi)始的內(nèi)容起點(diǎn)低,,坡度小,與實(shí)際聯(lián)系緊密,,多數(shù)學(xué)生對(duì)本章的學(xué)習(xí)有一定的興趣,,心里有想好好學(xué)習(xí)的意愿和信心。
在新課標(biāo)讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué),、做數(shù)學(xué),、用數(shù)學(xué)”的理念指導(dǎo)下,以教材為背景,,我將本節(jié)課的教學(xué)目標(biāo)分為以下三個(gè)方面:
知識(shí)與技能:
1,。理解古典概型的概念
2。利用古典概型求解隨機(jī)事件的概率
過(guò)程與方法:
在教學(xué)過(guò)程中,,進(jìn)一步發(fā)展學(xué)發(fā)現(xiàn)問(wèn)題,,分析問(wèn)題,解決問(wèn)題的能力,;培養(yǎng)學(xué)生歸納,、類比等合情推理能力;培養(yǎng)學(xué)生的應(yīng)用能力與意識(shí),。
情感態(tài)度與價(jià)值觀:
激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,,培養(yǎng)學(xué)生勇于探索,,善于發(fā)現(xiàn)的創(chuàng)新思想;結(jié)合問(wèn)題的現(xiàn)實(shí)意義,,培養(yǎng)學(xué)生的合作精神,。
重點(diǎn):理解古典概型的概念及概率公式,并能簡(jiǎn)單應(yīng)用,。
難點(diǎn):基本事件的理解,。
對(duì)于本節(jié)課難點(diǎn)的確定我認(rèn)真研讀了教材和教參,開(kāi)始確定了三個(gè)教學(xué)難點(diǎn),。結(jié)合自己的教學(xué)經(jīng)驗(yàn)并同組教師進(jìn)行探討后,,最后確定為一個(gè):基本事件的理解。因?yàn)楸竟?jié)課只要能對(duì)基本事件理解到位,,判斷是否為古典概型,,以及發(fā)現(xiàn)古典概型的概率公式就基本上都能迎刃而解了。對(duì)于難點(diǎn)的突破,,我并沒(méi)有要求學(xué)生一步到位,,而把理解的過(guò)程貫穿在本節(jié)課的始終。采用的方法是先是體驗(yàn),,后了解,,然后再體驗(yàn),最后爭(zhēng)取讓學(xué)生達(dá)到理解的層次,。
教法:根據(jù)本節(jié)課的特點(diǎn),,采取引導(dǎo)發(fā)現(xiàn)與歸納概括相結(jié)合的教學(xué)方法,融入問(wèn)題式教學(xué),。通過(guò)提出問(wèn)題,、分析問(wèn)題、解決問(wèn)題等教學(xué)過(guò)程一步步歸納概括出古典概型的概念及其概率公式,,再通過(guò)具體問(wèn)題的提出和解決,,讓學(xué)生體會(huì)到成功的喜悅,從而激發(fā)學(xué)生的學(xué)習(xí)興趣,,調(diào)動(dòng)他們的主觀能動(dòng)性,。采用多媒體教學(xué)手段,增強(qiáng)直觀性增大教學(xué)容量,,力爭(zhēng)提高課堂教學(xué)效率,。
學(xué)法:首先應(yīng)該給自己積極的心理暗示,數(shù)學(xué)是可以學(xué)好的,,也是有樂(lè)趣的,,更是有用的。在教師的引導(dǎo)下,認(rèn)真觀察思考,,大膽嘗試,,以提高提出問(wèn)題、分析問(wèn)題,、解決問(wèn)題的能力,。注重?cái)?shù)學(xué)思想的提升,通過(guò)數(shù)學(xué)語(yǔ)言的組織表達(dá),,鍛煉自己思維的嚴(yán)密性,。合作探究,共同進(jìn)步,,體驗(yàn)成功的喜悅,,培養(yǎng)合作意識(shí)和能力,為以后的發(fā)展打下良好的基礎(chǔ),。
1,、聚焦課堂
通過(guò)實(shí)驗(yàn)和觀察的方法,我們可以得到一些事件的概率估計(jì),。但這種方法耗時(shí)多,而且得到的僅是概率的近似值,。在一些特殊情況下,,我們需要尋找計(jì)算事件概率的通用方法。今天我們要學(xué)習(xí)的就是概率的一種特殊模型———古典概型,。
2,、明確目標(biāo)
(1)理解基本事件的含義
(2)理解古典概型及其概率計(jì)算公式,解決一些簡(jiǎn)單的古典概型問(wèn)題,。3,。問(wèn)題驅(qū)動(dòng)
那到底什么樣的概率模型是古典概型呢?古典概型的概率又如何求解呢,?為了弄清這兩個(gè)問(wèn)題,,先讓學(xué)生先考察兩個(gè)試驗(yàn),分析一下事件的構(gòu)成,。
(1)拋擲一枚質(zhì)地均勻的硬幣一次(2)拋擲一枚質(zhì)地均勻的骰子一次
教師提出問(wèn)題:以上兩個(gè)試驗(yàn)的結(jié)果分別有哪些,?這些結(jié)果具有哪些特點(diǎn)?把每個(gè)試驗(yàn)結(jié)果看成一個(gè)事件,,它們都是隨機(jī)事件嗎,?第二個(gè)試驗(yàn)中“出現(xiàn)偶數(shù)數(shù)點(diǎn)”可以用這些結(jié)果表示嗎?這些隨機(jī)試驗(yàn)結(jié)果出現(xiàn)的可能性相等嗎,?學(xué)生思考并討論,,結(jié)合教師提出的問(wèn)題談?wù)勛约旱目捶ā?/p>
設(shè)計(jì)意圖:對(duì)于這兩個(gè)試驗(yàn),我并沒(méi)有讓學(xué)生分組動(dòng)手實(shí)際操作,情形足夠簡(jiǎn)單,,背景足夠熟悉,,無(wú)需動(dòng)手操作。大量的重復(fù)試驗(yàn)可能會(huì)導(dǎo)致學(xué)生變得茫然,,覺(jué)得無(wú)聊,,并不能真正的激發(fā)他們的學(xué)習(xí)興趣趣,反而浪費(fèi)了時(shí)間,。數(shù)學(xué)中有的知識(shí)點(diǎn)或概念理解起來(lái)比較困難,,不可能一蹴而就,先讓學(xué)生體驗(yàn),,幫助學(xué)生感知基本事件的含義,,并為基本事件的理解這一難點(diǎn)的突破做好鋪墊,讓學(xué)生體驗(yàn)基本事件的的定義和特點(diǎn)的同時(shí),,鼓勵(lì)學(xué)生用自己的語(yǔ)言描述,,提高學(xué)生的數(shù)學(xué)語(yǔ)言的組織能力和表達(dá)能力。
4,、合作探究,、成果展示、師生評(píng)價(jià)
師生互動(dòng)中,,得出基本事件的定義和特點(diǎn)(教師板書(shū))
(過(guò)渡性語(yǔ)言)基本事件是我們解決古典概型的前提和基礎(chǔ),,為了加深同學(xué)們對(duì)基本事件的理解,我們?cè)賮?lái)看兩道例題,。
例1,、從字母a,b,,c,,d中任意取出兩個(gè)不同字母的試驗(yàn)中,有哪些基本事件,?
學(xué)生獨(dú)立思考后回答,,教師板書(shū)解題過(guò)程,強(qiáng)調(diào)書(shū)寫的規(guī)范性,。
基本事件為a,??a,,b,?,b,?,?a,,c?,,c,??a,,d,?,d,?,?b,c,?,,e?,?b,,d?,,f,??c,,d,?(教師板書(shū)) 例2 。某人射擊5槍,,命中了3槍,試寫出所有的基本事件(⊙表示命中,,x表示未命中 )
方法一:請(qǐng)同學(xué)們列舉出所有基本事件(教師板書(shū))(列舉法)
方法二:教師簡(jiǎn)單介紹樹(shù)狀圖(教師板書(shū)),,并告知學(xué)生樹(shù)狀圖也是列舉法的一種表現(xiàn)形式,。(樹(shù)狀圖)
設(shè)計(jì)意圖:在列舉法學(xué)習(xí)中,增加一個(gè)例子,,分別用樹(shù)形狀圖與直接列舉法展示思維過(guò)程,讓學(xué)生感受求基本事件個(gè)數(shù)的一般方法,,從而化解由于沒(méi)有學(xué)習(xí)排列組合而學(xué)習(xí)概率這一教學(xué)困惑,。
通過(guò)思考拋硬幣、擲骰子的試驗(yàn)和例1,、2,,讓學(xué)生認(rèn)真體會(huì)這些試驗(yàn)的共同特點(diǎn),得出古典概型的定義,。古典概型的定義(教師板書(shū))
你能舉例說(shuō)明現(xiàn)實(shí)生活中一些古典概型的例子嗎,?
設(shè)計(jì)意圖:通過(guò)舉例,,加強(qiáng)學(xué)生對(duì)古典概型的認(rèn)識(shí),讓學(xué)生初步體會(huì)把一些實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題加以解決,,培養(yǎng)學(xué)生的應(yīng)用意識(shí),。
古典概型是最基本的概率模型,是高考的重點(diǎn),,在高等數(shù)學(xué)概率論中也占有相當(dāng)重要的地位,,在現(xiàn)實(shí)生活中也有著比較廣泛的應(yīng)用。學(xué)好古典概型是學(xué)習(xí)其它概型的基礎(chǔ),。下面我們看幾個(gè)問(wèn)題,,幫助大家深化一下對(duì)古典概型概念的理解。問(wèn)題(1)問(wèn)題(2)問(wèn)題(3)問(wèn)題(4)問(wèn)題(5)
學(xué)生獨(dú)立思考后交換意見(jiàn),,學(xué)生代表發(fā)言,,其他同學(xué)評(píng)價(jià)補(bǔ)充。
設(shè)計(jì)意圖:通過(guò)正,、反兩方面的例子,,特別是舉一些破壞了古典概型兩個(gè)重要特征的例子,以突破古典概型識(shí)別的這一重要知識(shí)點(diǎn),,前兩個(gè)問(wèn)題還可以為以后學(xué)習(xí)幾何概型埋下伏筆,。
在解決前面的問(wèn)題和理解古典概型的概念之后,再引導(dǎo)學(xué)生探究問(wèn)題:例2中,,所命中的三槍中,,恰好有2槍連中的概率為多少?
學(xué)生先獨(dú)立思考,,然后小組內(nèi)相互交流,,代表發(fā)言,其他同學(xué)評(píng)價(jià)補(bǔ)充,。
基本事件總數(shù)為n的古典概型中,,包含的基本事件數(shù)為m的隨機(jī)事件a的概率是多少? 學(xué)生概括總結(jié)出古典概型的概率計(jì)算公式:p(a),?事件a所含基本事件個(gè)數(shù)(教師板書(shū))
基本事件總數(shù)
設(shè)計(jì)意圖:考慮在學(xué)生原有的認(rèn)知基礎(chǔ)上,,使學(xué)生逐步感受由特殊到一般的合情推理過(guò)程,讓學(xué)生體驗(yàn)到認(rèn)知的自然升華,。在概率的計(jì)算上,,鼓勵(lì)學(xué)生嘗試列表和畫(huà)出樹(shù)狀圖,讓學(xué)生感受求基本事件個(gè)數(shù)的一般方法,,從而化解由于沒(méi)有學(xué)習(xí)排列組合而學(xué)習(xí)概率這一教學(xué)困惑,。
過(guò)渡性語(yǔ)言引出下面的例題與變式。
例3,。單選題是標(biāo)準(zhǔn)化考試中常用的題型,,一般是從a,,b,c,,d四個(gè)選項(xiàng)中選擇一個(gè)正確答案,。如果考生掌握了考察的內(nèi)容,他可以選擇唯一正確的答案,。假設(shè)考生不會(huì)做,,他隨機(jī)的選擇一個(gè)答案,問(wèn)他答對(duì)的概率是多少,?
變式:在標(biāo)準(zhǔn)化考試中既有單選題又有多選題,,多選題是從a,b,,c,,d四個(gè)選項(xiàng)中選出所有正確的答案,同學(xué)們可能有一種感覺(jué),,如果不知道正確答案,,多選題更難猜對(duì),這是為什么,?
學(xué)生先獨(dú)立思考,,然后小組內(nèi)相互交流,合作探究,,代表發(fā)言,,其他同學(xué)評(píng)價(jià)補(bǔ)充。對(duì)于此變式的解題過(guò)程,,教師板書(shū)并強(qiáng)調(diào)解題過(guò)程的規(guī)范性,。
設(shè)計(jì)意圖:在課本例題后增加一個(gè)變式訓(xùn)練,變式的基本事件為15個(gè),,暗示學(xué)生在基本事件較多的試驗(yàn)中,,需用分類討論的思想,才能補(bǔ)充不漏快速地寫出所有基本事件,。鍛煉學(xué)生思維的嚴(yán)密性,與嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,,并再次感受列舉出所有基本事件在解決古典概型問(wèn)題的必要性和重要性,。
5、拓展提升
練習(xí)1:有同學(xué)認(rèn)為,,同時(shí)拋擲兩枚質(zhì)地均勻的硬幣一次看成一次試驗(yàn),,出現(xiàn)的結(jié)果有三種情況:全是正面,一正一反,,全是反面,。所以一次試驗(yàn)中的基本事件有三個(gè),,并且概率都是1。你認(rèn)為他說(shuō)的對(duì)嗎,? 3
設(shè)計(jì)意圖:這個(gè)練習(xí)可以檢驗(yàn)學(xué)生基本事件的理解程度,,根據(jù)學(xué)生的實(shí)際情況,決定是否進(jìn)行動(dòng)手試驗(yàn),。如果學(xué)生真的沒(méi)有理解到位,,那就必須進(jìn)行動(dòng)手進(jìn)行試驗(yàn)了,下面的練習(xí)2就必須舍棄,。原因有兩點(diǎn):
1,。課上時(shí)間有限2?;臼录睦斫膺@個(gè)難點(diǎn)不能突破,,練習(xí)2存在的價(jià)值也就。
練習(xí)2:同時(shí)擲兩個(gè)骰子,,計(jì)算:
(1)一共有多少種不同的結(jié)果,?(多少個(gè)基本事件)(2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種?
(3)向上的點(diǎn)數(shù)之和是5的概率是多少,?(4)向上的點(diǎn)數(shù)之和是幾的概率最大,?此時(shí)的概率是多少?
請(qǐng)學(xué)生思考,,小組交流后代表發(fā)言,。
設(shè)計(jì)意圖:不同思維的角度將古典概型中學(xué)生最容易錯(cuò)的忽視基本事件的“等可能性”暴露出來(lái),以引起學(xué)生的注意,,在教材的基礎(chǔ)上增加最后一問(wèn),,使學(xué)生對(duì)表格能有進(jìn)一步的認(rèn)識(shí)。本節(jié)課最后一次加深學(xué)生對(duì)基本事件的理解,,再次嘗試突破本節(jié)課的教學(xué)難點(diǎn),。
6、當(dāng)堂反思:
師生共同總結(jié)本節(jié)課的內(nèi)容,,學(xué)生反思教學(xué)目標(biāo)的完成情況,,對(duì)于學(xué)習(xí)中的新問(wèn)題課下可以多多思考,多多交流,,積極找到解決問(wèn)題的辦法,。
根據(jù)本節(jié)課的特點(diǎn),采用引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法,。通過(guò)“八步流程”的教學(xué)模式,,觀察對(duì)比、概括歸納古典概型的概念及其概率公式,,再通過(guò)具體問(wèn)題的提出和解決,,讓學(xué)生體會(huì)成功的喜悅,,來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的主體能動(dòng)性,,讓每一個(gè)學(xué)生充分地參與到學(xué)習(xí)活動(dòng)中來(lái),。本節(jié)課以問(wèn)題為紐帶,在探究過(guò)程中,,通過(guò)與學(xué)生的交流,,注意其思想變化,進(jìn)行恰當(dāng)引導(dǎo),;通過(guò)觀察課上練習(xí)和課后作業(yè),,課下個(gè)別談話的方式,了解學(xué)生知識(shí)技能和學(xué)習(xí)方法的不足,,用以指導(dǎo)今后的教學(xué),。