總結(jié)是對過去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧,、分析,,并做出客觀評價(jià)的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,,從而掌握并運(yùn)用這些規(guī)律,,是時(shí)候?qū)懸环菘偨Y(jié)了。相信許多人會覺得總結(jié)很難寫,?以下是小編收集整理的工作總結(jié)書范文,,僅供參考,希望能夠幫助到大家,。
高二數(shù)學(xué)必修三知識點(diǎn)總結(jié)篇一
(1)若f(x)是偶函數(shù),,那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),,則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則,。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;
(2)證明圖像c1與c2的對稱性,,即證明c1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在c2上,反之亦然;
(3)曲線c1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線c2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線c1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線c2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈r時(shí),,f(a+x)=f(a-x)恒成立,,則y=f(x)圖像關(guān)于直線x=a對稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;
4.函數(shù)的周期性
(1)y=f(x)對x∈r時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),,其圖像又關(guān)于直線x=a對稱,,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱,,則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對x∈r時(shí),,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5.方程k=f(x)有解k∈d(d為f(x)的值域);
高二數(shù)學(xué)必修三知識點(diǎn)總結(jié)篇二
1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,,這種算法由歐幾里得在公元前年左右首先提出,,因而又叫歐幾里得算法.
2.所謂輾轉(zhuǎn)相法,就是對于給定的兩個(gè)數(shù),,用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,,則將較小的數(shù)和余數(shù)構(gòu)成新的一對數(shù),繼續(xù)上面的除法,,直到大數(shù)被小數(shù)除盡,,則這時(shí)的除數(shù)就是原來兩個(gè)數(shù)的公約數(shù).
3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),,接著把所得的差與較小的數(shù)比較,,并以大數(shù)減小數(shù),繼續(xù)這個(gè)操作,,直到所得的數(shù)相等為止,,則這個(gè)數(shù)就是所求的公約數(shù).
4.秦九韶算法是一種用于計(jì)算一元二次多項(xiàng)式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.進(jìn)位制是人們?yōu)榱擞?jì)數(shù)和運(yùn)算方便而約定的記數(shù)系統(tǒng).“滿進(jìn)一”,就是k進(jìn)制,,進(jìn)制的基數(shù)是k.
7.將進(jìn)制的數(shù)化為十進(jìn)制數(shù)的方法是:先將進(jìn)制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,,再按照十進(jìn)制數(shù)的運(yùn)算規(guī)則計(jì)算出結(jié)果.
8.將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進(jìn)制數(shù)或所得的商,直到商為零為止,,然后把每次所得的余數(shù)倒著排成一個(gè)數(shù)就是相應(yīng)的進(jìn)制數(shù).
高二數(shù)學(xué)必修三知識點(diǎn)總結(jié)篇三
一,、學(xué)習(xí)目標(biāo):
知識與技能:理解直線與平面、平面與平面平行的性質(zhì)定理的含義,并會應(yīng)用性質(zhì)解決問題
過程與方法:能應(yīng)用文字語言,、符號語言,、圖形語言準(zhǔn)確地描述直線與平面、平面與平面的性質(zhì)定理
情感態(tài)度與價(jià)值觀:通過自主學(xué)習(xí),、主動參與,、積極探究的學(xué)習(xí)過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和積極性,培養(yǎng)學(xué)生良好的思維習(xí)慣,滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想,體會事物之間相互轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義思想方法
二,、學(xué)習(xí)重,、難點(diǎn)
學(xué)習(xí)重點(diǎn):直線與平面,、平面與平面平行的性質(zhì)及其應(yīng)用
學(xué)習(xí)難點(diǎn):將空間問題轉(zhuǎn)化為平面問題的方法,
三、學(xué)法指導(dǎo)及要求:
1,、限定45分鐘完成,注意逐字逐句仔細(xì)審題,認(rèn)真思考,、獨(dú)立規(guī)范作答,不會的先繞過,做好記號。
2,、把學(xué)案中自己易忘,、易出錯(cuò)的知識點(diǎn)和疑難問題以及解題方法規(guī)律,及時(shí)整理在解題本,多復(fù)習(xí)記憶。3,、a:自主學(xué)習(xí);b:合作探究;c:能力提升4,、小班、重點(diǎn)班完成全部,平行班完成a.b類題
四,、知識鏈接:
1.空間直線與直線的位置關(guān)系
2.直線與平面的位置關(guān)系
3.平面與平面的位置關(guān)系
4.直線與平面平行的判定定理的符號表示
5.平面與平面平行的判定定理的符號表示
五、學(xué)習(xí)過程:
a問題1:
1)如果一條直線與一個(gè)平面平行,那么這條直線與這個(gè)平面內(nèi)的直線有哪些位置關(guān)系?
(觀察長方體)
2)如果一條直線和一個(gè)平面平行,如何在這個(gè)平面內(nèi)做一條直線與已知直線平行?
(可觀察教室內(nèi)燈管和地面)
a問題2:一條直線與平面平行,這條直線和這個(gè)平面內(nèi)直線的位置關(guān)系有幾種可能?
a問題3:如果一條直線與平面α平行,在什么條件下直線與平面α內(nèi)的直線平行呢?
由于直線與平面α內(nèi)的任何直線無公共點(diǎn),所以過直線的某一平面,若與平面α相交,則直線就平行于這條交線
b自主探究1:已知:∥α,β,α∩β=b,。求證:∥b,。
直線與平面平行的性質(zhì)定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行
符號語言:
線面平行性質(zhì)定理作用:證明兩直線平行
思想:線面平行線線平行