在日常學習、工作或生活中,,大家總少不了接觸作文或者范文吧,,通過文章可以把我們那些零零散散的思想,,聚集在一塊,。范文怎么寫才能發(fā)揮它最大的作用呢,?以下是我為大家搜集的優(yōu)質范文,僅供參考,,一起來看看吧
蘇教高中數學必修一答案篇一
1,、知識目標:使學生理解指數函數的定義,初步掌握指數函數的圖像和性質,。
2,、能力目標:通過定義的引入,圖像特征的觀察,、發(fā)現(xiàn)過程使學生懂得理論與實踐 的辯證關系,,適時滲透分類討論的數學思想,培養(yǎng)學生的探索發(fā)現(xiàn)能力和分析問題,、解決問題的能力,。
3、情感目標:通過學生的參與過程,,培養(yǎng)他們手腦并用,、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神,。
教學重點,、難點:
1、 重點:指數函數的圖像和性質
2,、 難點:底數 a 的變化對函數性質的影響,,突破難點的關鍵是利用多媒體動感顯示,通過顏色的區(qū)別,,加深其感性認識,。
教學方法:引導——發(fā)現(xiàn)教學法、比較法,、討論法
教學過程:
一,、事例引入
t:上節(jié)課我們學習了指數的運算性質,今天我們來學習與指數有關的函數,。什么是函數?
s: --------
t:主要是體現(xiàn)兩個變量的關系,。我們來考慮一個與醫(yī)學有關的例子:大家對“非典”應該并不陌生,它與其它的傳染病一樣,,有一定的潛伏期,,這段時間里病原體在機體內不斷地繁殖,病原體的繁殖方式有很多種,,分裂就是其中的一種,。我們來看一種球菌的分裂過程:
c:動畫演示(某種球菌分裂時,,由1分裂成2個,2個分裂成4個,,------,。一個這樣的球菌分裂x次后,得到的球菌的個數y與x的函數關系式是: y = 2 x )
s,t:(討論) 這是球菌個數 y 關于分裂次數 x 的函數,,該函數是什么樣的形式(指數形式),,
從 函數特征分析:底數 2 是一個不等于 1 的正數,是常量,,而指數 x 卻是變量,,我們稱這種函數為指數函數——點題,。
二,、指數函數的定義
c:定義: 函數 y = a x (a>0且a≠1)叫做指數函數, x∈r.,。
問題 1:為何要規(guī)定 a > 0 且 a ≠1?
s:(討論)
c: (1)當 a <0 時,,a x 有時會沒有意義,如 a=﹣3 時,,當x=
就沒有意義;
(2)當 a=0時,,a x 有時會沒有意義,如x= - 2時,,
(3)當 a = 1 時,, 函數值 y 恒等于1,沒有研究的必要,。
鞏固練習1:
下列函數哪一項是指數函數( )
a,、 y=x 2 b、y=2x 2 c,、y= 2 x d,、y= -2 x
蘇教高中數學必修一答案篇二
教學目標:
(1) 了解集合、元素的概念,,體會集合中元素的三個特征;
(2) 理解元素與集合的"屬于"和"不屬于"關系;
(3) 掌握常用數集及其記法;
教學重點:掌握集合的基本概念;
教學難點:元素與集合的關系;
教學過程:
一,、引入課題
軍訓前學校通知:8月15日8點,高一年級在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,,集合是我們常用的一個詞語,,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,,而不是個別的對象,,為此,我們將學習一個新的概念--集合(宣布課題),,即是一些研究對象的總體,。
閱讀課本p2-p3內容
二、新課教學
(一)集合的有關概念
1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,,人們能意識到這些東西,,并且能判斷一個給定的東西是否屬于這個總體。
2. 一般地,,我們把研究對象統(tǒng)稱為元素(element),,一些元素組成的總體叫集合(set),也簡稱集,。
3. 思考1:判斷以下元素的全體是否組成集合,,并說明理由:
(1) 大于3小于11的偶數;
(2) 我國的小河流;
(3) 非負奇數;
(4) 方程的解;
(5) 某校2007級新生;
(6) 血壓很高的人;
(7) 著名的數學家;
(8) 平面直角坐標系內所有第三象限的點
(9) 全班成績好的學生。
對學生的解答予以討論,、點評,,進而講解下面的問題。
4. 關于集合的元素的特征
(1)確定性:設a是一個給定的集合,,x是某一個具體對象,,則或者是a的元素,或者不是a的元素,,兩種情況必有一種且只有一種成立,。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),,因此,,同一集合中不應重復出現(xiàn)同一元素。
(3)無序性:給定一個集合與集合里面元素的順序無關,。
(4)集合相等:構成兩個集合的元素完全一樣,。
5. 元素與集合的關系;
(1)如果a是集合a的元素,就說a屬于(belong to)a,,記作:a∈a
(2)如果a不是集合a的元素,,就說a不屬于(not belong to)a,記作:aa
例如,,我們a表示"1~20以內的所有質數"組成的集合,,則有3∈a
4a,等等,。
6.集合與元素的字母表示: 集合通常用大寫的拉丁字母a,,b,c...表示,,集合的元素用小寫的拉丁字母a,b,c,...表示,。
7.常用的數集及記法:
非負整數集(或自然數集),記作n;
正整數集,,記作n或n+;
整數集,,記作z;
有理數集,,記作q;
實數集,記作r;
(二)例題講解:
例1.用"∈"或""符號填空:
(1)8 n; (2)0 n;
(3)-3 z; (4) q;
(5)設a為所有亞洲國家組成的集合,,則中國 a,,美國 a,印度 a,,英國 a,。
例2.已知集合p的元素為, 若3∈p且-1p,求實數m的值,。
(三)課堂練習:
課本p5練習1;
歸納小結:
本節(jié)課從實例入手,,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,,然后介紹了常用集合及其記法,。
作業(yè)布置:
1.習題1.1,第1- 2題;
2.預習集合的表示方法,。
蘇教高中數學必修一答案篇三
重點難點教學:
1.正確理解映射的概念;
2.函數相等的兩個條件;
3.求函數的定義域和值域,。
一.教學過程:
1. 使學生熟練掌握函數的概念和映射的定義;
2. 使學生能夠根據已知條件求出函數的定義域和值域; 3. 使學生掌握函數的三種表示方法,。
二.教學內容:
1.函數的定義
設a,、b是兩個非空的數集,如果按照某種確定的對應關系f,,使對于集合a中的任意一個數x,,在集合b中都有唯一確定的數()fx和它對應,那么稱:fab?為從集合a到集合b的一個函數(function),,記作:
(),yf_a
其中,,x叫自變量,x的取值范圍a叫作定義域(domain),,與x的值對應的y值叫函數值,,函數值的集合{()|}f_a?叫值域(range)。顯然,,值域是集合b的子集,。
注意:
① “y=f(x)”是函數符號,可以用任意的字母表示,,如“y=g(x)”;
②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,,一個數,而不是f乘x.
2.構成函數的三要素 定義域,、對應關系和值域,。
3、映射的定義
設a,、b是兩個非空的集合,,如果按某一個確定的對應關系f,使對于集合a中的任意
一個元素x,在集合b中都有唯一確定的元素y與之對應,,那么就稱對應f:a→b為從 集合a到集合b的一個映射。
4. 區(qū)間及寫法:
設a,、b是兩個實數,,且a
(1) 滿足不等式axb??的實數x的集合叫做閉區(qū)間,表示為[a,b];
(2) 滿足不等式axb??的實數x的集合叫做開區(qū)間,,表示為(a,b);
5.函數的三種表示方法 ①解析法 ②列表法 ③圖像法
蘇教高中數學必修一答案篇四
函數思想在解題中的應用主要表現(xiàn)在兩個方面:一是借助有關初等函數的性質,,解有關求值、解(證)不等式,、解方程以及討論參數的取值范圍等問題:二是在問題的研究中,,通過建立函數關系式或構造中間函數,把所研究的問題轉化為討論函數的有關性質,,達到化難為易,,化繁為簡的目的。函數與方程的思想是中學數學的基本思想,,也是歷年高考的重點,。
1.函數的思想,是用運動和變化的觀點,,分析和研究數學中的數量關系,,建立函數關系或構造函數,運用函數的圖像和性質去分析問題,、轉化問題,,從而使問題獲得解決。
2.方程的思想,,就是分析數學問題中變量間的等量關系,,建立方程或方程組,或者構造方程,,通過解方程或方程組,,或者運用方程的性質去分析、轉化問題,,使問題獲得解決,。方程思想是動中求靜,研究運動中的等量關系;
3.函數方程思想的幾種重要形式
(1)函數和方程是密切相關的,,對于函數y=f(x),,當y=0時,就轉化為方程f(x)=0,,也可以把函數式y(tǒng)=f(x)看做二元方程y-f(x)=0,。
(2)函數與不等式也可以相互轉化,對于函數y=f(x),,當y>0時,,就轉化為不等式f(x)>0,,借助于函數圖像與性質解決有關問題,而研究函數的性質,,也離不開解不等式;
(3)數列的通項或前n項和是自變量為正整數的函數,,用函數的觀點處理數列問題十分重要;
(4)函數f(x)=(1+x)^n (n∈n)與二項式定理是密切相關的,利用這個函數用賦值法和比較系數法可以解決很多二項式定理的問題;
(5)解析幾何中的許多問題,,例如直線和二次曲線的位置關系問題,,需要通過解二元方程組才能解決,涉及到二次方程與二次函數的有關理論;
(6)立體幾何中有關線段,、角,、面積、體積的計算,,經常需要運用布列方程或建立函數表達式的方法加以解決,。
蘇教高中數學必修一答案篇五
教學目標:①掌握對數函數的性質。
②應用對數函數的性質可以解決:對數的大小比較,,求復合函數的定義域,、值 域及單調性,。
③ 注重函數思想,、等價轉化、分類討論等思想的滲透,提高解題能力,。
教學重點與難點:對數函數的性質的應用,。
教學過程設計:
⒈復習提問:對數函數的概念及性質。
⒉開始正課
1 比較數的大小
例 1 比較下列各組數的大小,。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logл0.5 ,lnл
師:請同學們觀察一下⑴中這兩個對數有何特征?
生:這兩個對數底相等。
師:那么對于兩個底相等的對數如何比大小?
生:可構造一個以a為底的對數函數,,用對數函數的單調性比大小,。
師:對,請敘述一下這道題的解題過程,。
生:對數函數的單調性取決于底的大?。寒?
調遞減,所以loga5.1>loga5.9 ;當a>1時,,函數y=logax單調遞增,,所以loga5.1
板書:
解:ⅰ)當0
∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9
ⅱ)當a>1時,函數y=logax在(0,,+∞)上是增函數,,
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學們觀察一下⑵中這三個對數有何特征?
生:這三個對數底、真數都不相等,。
師:那么對于這三個對數如何比大小?
生:找“中間量”,, log0.50.6>0,,lnл>0,logл0.5<0;lnл>1,,
log0.50.6<1,,所以logл0.5< log0.50.6< lnл。
板書:略,。
師:比較對數值的大小常用方法:①構造對數函數,,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,,③利用對數函數圖象的位置關系來比大小,。
2 函數的定義域, 值 域及單調性。