每個人都曾試圖在平淡的學(xué)習(xí),、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察,、聯(lián)想,、想象、思維和記憶的重要手段,。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎,?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧,。
高二數(shù)學(xué)上冊重點(diǎn)知識歸納 高二上數(shù)學(xué)知識點(diǎn)全部篇一
平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑,。
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時,方程表示圓,此時圓心為,半徑為
當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形,。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求,。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出d,e,f;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
3,、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有
(2)過圓外一點(diǎn)的切線:
①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4,、圓與圓的位置關(guān)系:
通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定,。
當(dāng)時兩圓外離,此時有公切線四條;
當(dāng)時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓,。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn).
高二數(shù)學(xué)上冊重點(diǎn)知識歸納 高二上數(shù)學(xué)知識點(diǎn)全部篇二
直線與圓:
1、直線的傾斜角的范圍是
在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角,。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;
2,、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。
3,、直線方程:⑴點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為,
⑵斜截式:直線在軸上的截距為和斜率,則直線方程為
4,、直線與直線的位置關(guān)系:
(1)平行a1/a2=b1/b2注意檢驗(yàn)(2)垂直a1a2+b1b2=0
5、點(diǎn)到直線的距離公式;
兩條平行線與的距離是
6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:
注意能將標(biāo)準(zhǔn)方程化為一般方程
7,、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8,、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交
9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑,、半弦長,、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長
高二數(shù)學(xué)上冊重點(diǎn)知識歸納 高二上數(shù)學(xué)知識點(diǎn)全部篇三
拋物線的性質(zhì):
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a,。
對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)p,。
特別地,當(dāng)b=0時,,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點(diǎn)p,,坐標(biāo)為
p(-b/2a,(4ac-b^2)/4a)
當(dāng)-b/2a=0時,,p在y軸上;當(dāng)δ=b^2-4ac=0時,,p在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小,。
當(dāng)a>0時,,拋物線向上開口;當(dāng)a<0時,拋物線向下開口,。
|a|越大,,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,。
當(dāng)a與b同號時(即ab>0),,對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右,。
5.常數(shù)項c決定拋物線與y軸交點(diǎn),。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個數(shù)
δ=b^2-4ac>0時,,拋物線與x軸有2個交點(diǎn),。
δ=b^2-4ac=0時,拋物線與x軸有1個交點(diǎn),。
δ=b^2-4ac<0時,,拋物線與x軸沒有交點(diǎn)。x的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),,乘上虛數(shù)i,,整個式子除以2a)
焦半徑:
焦半徑:拋物線y2=2px(p>0)上一點(diǎn)p(x0,y0)到焦點(diǎn)fè???÷?
p2,,0的距離|pf|=x0+p2.
求拋物線方程的方法:
(1)定義法:根據(jù)條件確定動點(diǎn)滿足的幾何特征,,從而確定p的值,,得到拋物線的標(biāo)準(zhǔn)方程.
(2)待定系數(shù)法:根據(jù)條件設(shè)出標(biāo)準(zhǔn)方程,再確定參數(shù)p的值,,這里要注意拋物線標(biāo)準(zhǔn)方程有四種形式.從簡單化角度出發(fā),,焦點(diǎn)在x軸的,設(shè)為y2=ax(a≠0),,焦點(diǎn)在y軸的,,設(shè)為x2=by(b≠0).