無論是身處學校還是步入社會,,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。相信許多人會覺得范文很難寫?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀,。
乘法分配律教學反思篇一
乘法分配律是在學生學習了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學的,。乘法分配律也是學生較難理解和敘述的定律。因此在本節(jié)課教學設(shè)計上,,我結(jié)合新課標的一些基本理念和本地區(qū)的具體情況,,注重從學生的實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,,讓學生在不斷的感悟和體驗中學習知識,。
《數(shù)學課程標準》指出:“學生的數(shù)學學習內(nèi)容應(yīng)當是現(xiàn)實的、有意義的,、富有挑戰(zhàn)性的,。”數(shù)學教育家波利亞曾經(jīng)說過:“數(shù)學教師的首要責任是盡其一切可能,,來發(fā)展學生解決問題的能力,。”而我們過去的教學往往比較重視解決書上的數(shù)學問題,,學生一旦遇到實際問題就束手無策,。因此,,在上課的一開始,我創(chuàng)造性地使用教材,,創(chuàng)設(shè)了一個肯德基餐廳用餐的情境,,使學生置身于非常熟悉的生活情境中,極大地激發(fā)了學生的學習欲望,。學生很快地按要求用兩種不同的方法列出算式,,并且能夠輕而易舉地證明兩式相等。接著要求學生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律,。在此基礎(chǔ)上,,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,,繼續(xù)讓學生觀察,、思考、猜想,,然后交流,、分析、探討,,感悟到等式的特點,,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律,。這樣既培養(yǎng)了學生的猜想能力,,又培養(yǎng)了學生驗證猜想的能力。學生通過自主探索去發(fā)現(xiàn),、猜想,、質(zhì)疑、感悟,、調(diào)整,、驗證、完善,,主體性得到了充分的發(fā)揮,。
與此同時,我還十分注重合作與交流,,多向互動,。倡導課堂教學的動態(tài)生成是新課程標準的重要理念。在數(shù)學學習中,,每個學生的思維方式,、智力、活動水平都是不一樣的,。因此,,為了讓不同的學生在數(shù)學學習中都得到發(fā)展,,我在本課教學中立足通過生生,、師生之間多向互動,,特別是通過學生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu),。學生在這樣一個開放的環(huán)境中博采眾長,,共同經(jīng)歷猜想、驗證,、歸納知識的形成過程,,共同體驗成功的快樂。既培養(yǎng)了學生的問題意識,,又拓寬了學生思維,,學生也學得積極主動。
應(yīng)用規(guī)律,,解決實際問題是數(shù)學學習的目的所在,。在練習題型的設(shè)計上,有搶答(填空)題,、判斷題,、連線題、簡算題和拓展題,,它們并不孤立,,而是有機地聯(lián)系在一起,由基本題到變式題,,由一般題到綜合題,,有一定的梯度和廣度。使學生逐步加深認識,,在弄清算理的基礎(chǔ)上,,學生能根據(jù)題目的特點,靈活地運用所學知識進行簡便運算和拓展練習,。不僅要求學生會順向應(yīng)用乘法分配律,,而且還要求學生會反向應(yīng)用。通過正反應(yīng)用的練習,,加深學生對乘法分配律的理解,。從課堂反饋來看,學生熱情較高,,能夠?qū)W以致用,。學生通過自己的努力以及和同學的交流合作,解題速度和準確性都很理想,。只有這樣才能真正提高學生的計算能力,。
乘法分配律教學反思篇二
乘法分配律是在學生學習了加法交換律,、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學的,。乘法分配律也是所有運算定律中變化最多的,,因此它是學生最難理解與運用的定律。因此我在教學中讓學生在不斷的感悟,、體驗中理解乘法分配律,,從而概括出乘法分配律。
(1)從學生已有生活經(jīng)驗出發(fā),通過觀察,、類比,、歸納、驗證,、運用等方法深化和豐富對乘法分配律的認識,。
(2)滲透“由特殊到一般,再由一般到特殊”的認識事物的方法,培養(yǎng)學生獨立自主、主動探索,、發(fā)現(xiàn)問題,解決問題的能力,,提高數(shù)學的應(yīng)用意識。
我盡量想體現(xiàn)新課標的一些理念,,注重從實際出發(fā),,把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在體驗中學到知識,。順延之前學習乘法交換律和乘法結(jié)合律的情境舉例:利用植樹活動情境“一共有25個小組,,每組里4人負責挖坑、種樹,,2人負責抬水,、澆水”。提出問題:“一共有多少名同學參加了這次植樹活動”,。讓學生嘗試通過不同的方法得出:
(4 + 2)×254×25 + 2×25
= 6×25 = 100 + 50
= 150(元)= 150(元)
此時,,讓學生觀察通過計算方法得到了相同的結(jié)果,這兩個算式可用“=”連接,。使之讓學生從中感受了乘法分配律的模型,。從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,,再把兩個積相加,,結(jié)果不變?!庇米帜感问奖硎荆?/p>
(a + b)× c = a × c + b × c
1,、在完成課本36頁做一做時,對應(yīng)這3道判斷題,
(1),、判斷56×(19+28)=56×19+28,,讓學生感知到乘法分配律要分給括號里的每一個數(shù),強調(diào)乘法分配律的“公平性”,。
(2),、判斷32×(7×3)=32×7+32×3,讓學生注意到乘法結(jié)合律和乘法分配律的區(qū)別:通過對運算定律意義的描述,,和算式的特點,,提煉出最簡潔的區(qū)分方法:乘法結(jié)合律是連乘情況下的,,乘法分配律除了乘法還有加法(后繼教學還會出現(xiàn)減法),,容易使我們混淆的原因是,它們都是乘法的運算定律都有乘法出現(xiàn),,更關(guān)鍵是它們都出現(xiàn)了小括號,。
(3)、判斷64×64+36×64,,借助64個64和36個64,,一共是64+36=100個64,讓學生理解乘法分配律逆向使用,,在一些情況下,,計算會變得十分簡便。
2,、在完成較簡單的課本36頁做一做后,,進行一些擴展型的練習:
由于本節(jié)課的知識運用的難度較大,學生對乘法分配律可以基本掌握,,但是對于其萬般變化,,還是有點力不從心,而該運算定律對學生后繼學習,,尤其是小數(shù)和分數(shù)計算時有一定影響,,所以還需要學生在本節(jié)課后進行深入的學習,教師也需要針對乘法分配律的每一種題型,,結(jié)合學生的掌握情況進行更系統(tǒng)深入的講解,。
乘法分配律教學反思篇三
《乘法分配律》是四年級第七單元的內(nèi)容,在此之前,,學生上個學期已經(jīng)學過了加法交換律和結(jié)合律,、乘法交換律和結(jié)合律,同時這個學期第四單元混合運算中也運用了學過的運算律進行簡便的計算,,上課之前,,我以為學生對這一部分的知識并不陌生,所以就簡單地設(shè)計了復(fù)習,,回顧學過的運算律,,再讓學生發(fā)現(xiàn)運算律在簡便計算中的運用,,接著就出示了上課的例題,讓學生從例題中尋找乘法分配律的影子,,再通過舉例,,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授,。通過鞏固練習讓學生認識乘法分配律在計算和實際生活問題中的運用,。上課之前,我以為學生會跟著我的思路走,,會很順利的上完整節(jié)課,。但上完課,我發(fā)現(xiàn)我自己的課堂出現(xiàn)了很多的問題,,總結(jié)了一下,,我感覺自己在很多方面做得很不到位。
開始的時候,,學生回顧運算律的時候出現(xiàn)了小的問題,,讓我有一點束手無策,導致后面的復(fù)習題忘記出示,,課堂環(huán)節(jié)被遺漏,。
教學新課的時候,學生的列式不是我想要的算式的形式,,我就直接寫出我想要的算式的形式了,,其實這個時候可以用乘法交換律變成我想要的形式,同時,,我也在想,,知識應(yīng)該是靈活的,我也應(yīng)該寫出學生說出的那種形式,,因為這是學生自己列出來的式子,,他自己肯定能理解的,但課上我的做法就有點急于求成,,有點生搬硬套了,。
小組討論的時候也出現(xiàn)了很多的問題,本來我認為這節(jié)課學生應(yīng)該很快地發(fā)現(xiàn)等式兩邊的特點的,,也能很快地說出它們的共同點的,,但上課的時候,小組討論中我發(fā)現(xiàn),,學生根本不知道該如何發(fā)現(xiàn)這些算式的共同點,,即使有些同學發(fā)現(xiàn)了一些特點也不知道該如何表達出來,課后反思了,我發(fā)現(xiàn)自己的問題設(shè)計的不好,,學生不能明白地知道該從哪里入手,,是比較數(shù)字上面的關(guān)系,還是觀察式子上的關(guān)系,,還是看符號上的關(guān)系,,所以導致學生不知道該怎么說,還有一點重要的原因是我在討論之前比較例題中的等式的時候沒有清楚地講到讓學生觀察等式的運算順序,,導致學生不會說,。另一方面,對于將等式抽象成一個字母表示的式子本身不是什么難事,,但還要講出抽象的過程,,對于四年級的學生有一點難度,學生能感覺出來就是這樣寫,,但說的有理有據(jù)真的很困難,。所以在我們的教學中,我們要考慮到學生的認知水平,,讓學生說出他應(yīng)該有的想法就很好了,以后的教學中我們應(yīng)盡量讓學生進行小組討論說出自己的想法,,同時也要注意小組討論的程度問題,,提出適合學生的、有效的問題是很有必要的,。
練習中,,要更多地關(guān)注學生的能力發(fā)展,要讓學生說出自己的想法,,把每一題的設(shè)計意圖理解清楚,,根據(jù)題意正確地進行計算,并掌握做題的方法,。
一節(jié)課下來發(fā)現(xiàn)自己出現(xiàn)了很多很多的問題,,希望在以后的教學中能慢慢地減少這樣問題的出現(xiàn)。
乘法分配律教學反思篇四
《乘法分配律》是整個四年級運算定律中最最重要的一節(jié),。理解乘法分配律,、并會很好運用他很重要!所以這節(jié)課重點就是在于讓學生理解乘法分配律的意義,。
整堂課基本完成了教學目標,,但在環(huán)節(jié)設(shè)置以及細節(jié)等方面存在很多問題。
本節(jié)課是一節(jié)概念課,,旨在學生通過操作整理式子(多余3)——觀察式子——猜測觀點——驗證觀點——總結(jié)定理,,這樣一個過程。如果后面沒有反例,就證明存在這種成立的可能,。而在整節(jié)課程中,,學生沒有明確的用具體數(shù)字驗證它是成立的,所以推導出來的不具有說服力,??赡軙o學生一種不好的印象,猜想后就可以了,,不需要驗證,、或者不需要反證來驗證就可以了。所以概念怎么推到出來這個很重要,。
學生無論是回答好的還是不好的,,對的還是不對的,都需要老師帶有評判性的語言,,這樣對于學生的積極性都可以提高,。同樣的對于典型的問題可以進行當堂解答,這都是課堂生成的一個過程,,需要重視學生在整個課程的反映這個很重要,。
在整個過程中有同學列出38×(547-347)和(547-347)×38這兩個算式,它都可以用乘法分配律來講,,但同時兩者也是有差異的,。課堂生成的東西需要注意,并且坐好預(yù)設(shè),。將38放到前面,,可以避免出錯。這個小的知識點也是需要去讓學生通過對比來理解的這很重要,。方便他們積累避免錯誤,。
在上整堂課前,已經(jīng)去試教過3個班,。雖然每個班情況都不一樣,,但是試教就是跟孩子的磨合過程,試教過程中發(fā)現(xiàn)什么問題,,再去改正過來,,調(diào)整好。如果每個班都出現(xiàn)這樣的問題,,說明課程設(shè)置不合理,。需要對教案進行修改。這也是為什么需要試教,。希望在試教過程中,,能夠反思,,自己發(fā)現(xiàn)問題所在。
總的來說,,這個課從制作教案,、試教、修改,、正式教學過程中,,感謝數(shù)學組尤其是師傅對我的指點以及磨煉。試教讓我明白了課件調(diào)整的重要性,,一定要符合學生的認知發(fā)展規(guī)律,。讓我明白了數(shù)學語言是需要邏輯性,針對性以及嚴密性的,。所以未來的路還很長,,我還會再修改磨煉的。要相信好課是不斷磨出來的,!
乘法分配律教學反思篇五
《乘法分配律》一課是四年級上冊第四單元的教學內(nèi)容,,它相對于加法交換律、結(jié)合律,,乘法交換律和結(jié)合律來說會比較抽象,,學生較難于理解。因此把本課的教學重點定位為“探索并發(fā)現(xiàn)乘法分配律,,理解乘法分配律的意義”,,讓學生經(jīng)歷“觀察算式——仿寫算式——解釋規(guī)律——應(yīng)用規(guī)律”的過程。
一,、比賽導入激發(fā)探究欲望
課前創(chuàng)設(shè)比賽情境:老師能很快說出下面幾道題的得數(shù),你信嗎,?不信的同學敢跟我比一比嗎,?(出示:28×70+72×70(125+10)×834×101)在我既對又快的說出結(jié)果時,孩子們都很驚訝,,于是我因勢利導:剛才的比賽老師算得快,,是因為老師有一個取勝的秘訣,它可以使計算簡便,,你們想知道嗎,?學完這節(jié)課,你就能發(fā)現(xiàn)其中的秘密,。學生個個躍躍欲試,,瞬間充滿探究的欲望,很好地激發(fā)了學生學習的興趣,。
二,、自主探索發(fā)現(xiàn)規(guī)律
在解決“一共貼了多少塊磁磚,?”中,學生列出了四個算式:3×10+5×10,、4×8+6×8,、(3+5)×10、(4+6)×8后,,在讓學生觀察四個算式之后,,先引導學生將四個算式進行分類并說明分類的標準。通過這個環(huán)節(jié),,學生對于相等的兩個算式的特征有了進一步的了解,,知道將3×10+5×10和(3+5)×10分為一類,將4×8+6×8和(4+6)×8分為一類,,是因為它們的數(shù)字都一樣,,都是由3、5,、10組成或是由4,、6、8組成的,,了解乘法分配律中有3個數(shù),;如將3×10+5×10和將4×8+6×8分一類,將(3+5)×10和(4+6)×8分為一類的,,則從中明白一邊都是兩個積相加,,另一邊則是兩個數(shù)的和與一個數(shù)相乘。通過這個分類活動,,讓學生自主發(fā)現(xiàn)規(guī)律,,為理解乘法分配律做了很好的鋪墊。接著再讓學生仿寫算式,,總結(jié)規(guī)律并解釋規(guī)律,,最后再應(yīng)用規(guī)律揭示課前比賽中老師獲勝的奧秘。
三,、錯因分析防患未然
(1)(6+30)×7=7×6+7×30
(2)25×(4+60)=25×4+60
(3)16×5×8=16×5+16×8
(4)15×3+15×7=(15+15)×(3+7)”讓學生進行分析,、判斷并修正。特別是第3題,,讓學生對比乘法分配律和乘法結(jié)合律的數(shù)學模型,,找出其中的區(qū)別,加以比較,,從而發(fā)現(xiàn)模型左邊乘法結(jié)合律是兩個數(shù)的積,,而乘法分配律是兩個數(shù)的和,而模型右邊乘法結(jié)合律是連乘的形式,,而乘法分配律是兩個積相加的形式,。這樣對比,,加深對乘法分配律模型的認識和對其意義的理解。分析錯因后,,還不忘讓學生說說:“你想對小馬虎說什么,?”來提醒告誡學生,除了要養(yǎng)成認真細心的習慣外,,還要運用好乘法分配律,,注意分配律與結(jié)合律的區(qū)別,將錯誤扼制在搖籃里,。
不足之處:雖然學生對于乘法分配律的理解比較到位,,較好地達成了教學目標,但如能進行適時拓展,,讓學生通過“兩個數(shù)的和與一個數(shù)相乘來聯(lián)想到兩個數(shù)的差與一個數(shù)相乘,,兩個數(shù)的和除以一個數(shù)及兩個數(shù)的差除以一個數(shù)是否都可以應(yīng)用乘法分配律這個數(shù)學模型?”會使課堂更豐滿,,更有深度,。
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
乘法分配律教學反思篇六
乘法分配律是繼乘法交換律,、乘法結(jié)合律之后的新的運算定律,,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運算,。從某種程度上來說,,其抽象程度要高一些,因此,,對學生而言,,難度偏大,如何使學生掌握得更好,,記得更牢,?我想學生自己獲得的知識要比灌輸?shù)脕淼挠浀酶巍R虼宋以谝婚_始設(shè)計了一個購物的情境,,讓學生在一個寬松愉悅的環(huán)境中,走進生活,,開始學習新知,。在教學過程中有坡度的讓學生在不斷的感悟、體驗中理乘法分配律,,從而自己概括出乘法分配律,。我是這樣設(shè)計:
一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,,4人負責抬水和澆樹,。重組教材,,改變每組的人數(shù),由(4+2)個25,,變?yōu)椋?+6)個25更能凸顯出應(yīng)用乘法分配律后帶來的方便,,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑,、種樹”“抬水,、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
通過引入解決問題讓學生得到兩個算式,。先捉其意義,,再突顯其表現(xiàn)的形式。
借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性,。這是生活中遇到過的,,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題,。
讓學生親歷規(guī)律探索形成過程,。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值,。既然是“規(guī)律定律”,,就是讓學生親歷規(guī)律形成的科學過程設(shè)計中,不著痕跡的讓學生不斷觀察,、比較,、猜想、驗證,,從而概括出乘法分配律,,在探索、歸納過程中,,滲透著從特殊到一般,,又由一般到特殊的數(shù)學思想和方法。
學生主動去設(shè)計,、解決,,調(diào)動學生的積極性。讓學生根據(jù)自己的想法,,選擇自己喜歡的方案,,開放給學生,發(fā)揮學生的主體性,,通過去發(fā)現(xiàn),、猜想、質(zhì)疑,、感悟,、調(diào)整,、驗證、完善,,驗證其內(nèi)在的規(guī)律,,從而概括出乘法分配律。讓學生能自由地利用自己的知識經(jīng)驗,、思維方式去嘗試解決問題,,在探究這一系列的等式有什么共同點的活動中。
在學生已有的知識經(jīng)驗的基礎(chǔ)上,,一起來研究抽象的算式,,尋找它們各自的特點,從而概括它們的規(guī)律,。在尋找規(guī)律的過程中,,有同學是橫向觀察,也有同學是縱向觀察,,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),,去嘗試解決問題,又能使不同思維水平的學生得到相應(yīng)的滿足,,獲得相應(yīng)的成功體驗,。
當然,對乘法分配律的意義還需做到更式形結(jié)合解釋,,那就更有利于模型的建立,。
乘法分配律教學反思是必要的,所以老師們一定也要好好地去對待,。不斷的反思,,才可以促進不斷的進步。以上面的文章,,希望與各位同行們共同進步,。
乘法分配律教學反思篇七
我對教材內(nèi)容、學情進行了認真的分析之后,,確定了教學目標:通過小組合作探索乘法分配律的活動,,進一步體驗探索規(guī)律的過程,并能用字母表示,;經(jīng)歷共同探索的過程,,培養(yǎng)解決實際問題和數(shù)學交流的能力;會用乘法分配律進行一些簡便計算,。通過學生自主研究、小組討論,、全班交流以及講學練相結(jié)合,,設(shè)計相應(yīng)的練習題,,逐步理解抽象的乘法分配律。
通過教研組全體老師的努力,,我們設(shè)計了比較合理的前置性小研究,。
在本節(jié)課的教學過程中,學生通過對“前置性小研究”的探索研究,,能會用兩種方法去解決同一問題,,并且能講出自己的思路;能夠觀察出并說出兩道算式的特點,,能夠觀察出兩道算式的結(jié)果是相同的,;能夠按照算式的特點進行舉例;能夠自己說出規(guī)律,,總結(jié)規(guī)律,;能夠用求結(jié)果和乘法的意義去驗證這條規(guī)律的正確性、普遍性,;能夠運用乘法分配律解決實際的問題,,在做題的同時感受乘法分配律給計算帶來的方便。
當然,,本節(jié)課的教育教學過程,,也是有不足的地方。我認為:
1,、教師在施教的過程中,,經(jīng)常性的打斷學生的發(fā)言。其實這是很不好的習慣,。課下陳靖嫣對我說:“老師,,你一打斷我,我就不知道怎么說了,?!蔽易约阂惨庾R到了這個問題。我覺得在“生本課堂”中教師,,應(yīng)該有這樣一種意識,,那就是“等”的意識。等學生表達完他的所有想法之后,,他們在遇到“瓶頸”的時候,,老師可以經(jīng)過有智慧的引導,幫助他們度過“難過”,??墒俏覀兒芏鄷r候,經(jīng)常犯的錯誤是,學生只要一有點小問題,,老師馬上就出馬,,這樣是極不好的做法。像本次課中,,我有好幾次打斷了陳靖嫣同學的匯報,,也打斷了王孟陽同學的匯報,還有好幾次打斷了同學們的交流活動,。
對于這種打斷可能在心里帶著很僥幸的心理,,認為我必須在規(guī)定的時間完成某些教學任務(wù),不能讓本節(jié)課“節(jié)外生枝”,??墒牵@種心理違背了“生本課堂”的基本教學理念,。
2,、教師在引導的過程中,不能照顧到學生的想法,。像:徐昊同學和李厚杰同學在課堂上,,表達了自己的想法??墒俏以谑┙痰倪^程中,,沒有給予足夠的重視??赡軐τ诒竟?jié)課的教學,,他們的想法,是在浪費時間,??墒牵业倪@種做法,,卻不能照顧到他們的后續(xù)發(fā)展,。我覺得在處理這個事件的時候,我應(yīng)該既不能讓本節(jié)課“跑偏”,,也不能澆滅他們的“興趣之火”,。這是需要有一定的教育智慧的。
3,、我覺得學生們的交流是不夠熱烈的,。根本的原因是:學生們的研究不夠到位,不會提出自己的疑問,,不能對自己的疑問進行探索研究,。我覺得這都是老師在平時教學中,沒有給予足夠的指導的原因。
還有很多的問題,,也許是我沒有意識到的,。
結(jié)合本節(jié)課,關(guān)于生本課堂我有了很多的想法,。
我認為真正的“生本課堂”是這樣的:
教師在教學設(shè)計、教學過程等各個環(huán)節(jié),,能體現(xiàn)學生的主體地位,,從細節(jié)去體現(xiàn)。也是一種和諧的教育氛圍,。教師和學生可以圍繞一個問題據(jù)理力爭,,也可以在一節(jié)課中,實現(xiàn)多個知識點的“串聯(lián)”,,也可能好幾節(jié)課我們突破不了一個知識點的講解,。教師千萬要改變原先“計件工作”的模式,我們還原教育本來的色彩,。它應(yīng)該是自然的,,富有詩情畫意的。我們身在其中,,師生應(yīng)該一起去營造一種氛圍,,體會教育給我們帶來的幸和充實感。
我立志讓我的課堂,,成為我們幸福的源泉,。
乘法分配律教學反思篇八
今天靜下心來觀看了省賽課中葛老師執(zhí)教的《乘法分配律》一課。她巧妙引領(lǐng),。葛老師非常自然的借助孩子們喜愛的農(nóng)場游戲,,引入問題“誰能幫老師算算一共有多少菜?你能列出綜合算式嗎,?先求什么,,后求什么?”一方面教師問題的指向性簡練明確可以引導學生列出綜合算式,,另一方面借助情景能有效的幫助學生理解算式的道理,,明確意義。更為巧妙的是此情景內(nèi)容豐富可以列出不同的算式:
2×3+3×4和(2+4)×32×5+8×5和(2+8)×5(10+15)×4和10×4+15×4為后面的“觀察,、分類和探究”做好鋪墊,。
大膽放手。在第一個“求菜”的情境中,,是在教師的引導下學生順利完成了學習的過程,,然而后面的“求花”和“求果樹”就是放手讓學生自己探究了,很自然的激發(fā)了學生的探究欲望,分別列出了兩組算式:(2+8)×5和2×5+8×5以及(10+15)×4和10×4+15×4,。
這樣在學生喜愛的農(nóng)場情景中,,巧妙的引發(fā)出六道算式,為進一步的觀察和探究埋下了伏筆,。
得出6個算式后,,葛老師再次拋出問題:“這六個算式讓你分分類,你打算分幾類,?理由是什么,?”然后葛老師又引導學生同桌先討論,然后集體匯報,,于無形中讓學生經(jīng)歷了各個層面的探究活動,。讓學生觀察——猜想——舉例驗證——,和從“特例”進行驗證等一系列的活動,,最后歸納出一普遍性的規(guī)律,。
當結(jié)論得出后,葛老師并不是將字母表示進行簡單的灌輸,,而是巧妙的借助點子圖將用字母表示乘法分配律的過程變?yōu)橐蛐瓒O(shè),,從而呼之欲出。最后教師還通過乘法的意義加深學生對乘法分配律的理解,,并且教師還通過兩組以前學過的兩位數(shù)乘一位數(shù)和兩位數(shù)乘兩位數(shù)來打通乘法分配律與以前知識的聯(lián)系,。
總之,本節(jié)課在學習方式上自主學習與合作探究并存,,在思維發(fā)展上,,教師引導與放手相結(jié)合,整個學習過程,,因需而設(shè),,充滿了探究。
乘法分配律教學反思篇九
乘法分配律是在學生學習了加法交換律,、結(jié)合律和乘法交換律,、結(jié)合律的基礎(chǔ)上教學的。乘法分配律也是學生較難理解與敘述的定律,,是一節(jié)比較抽象的概念課,。我根據(jù)教學內(nèi)容的特點,為學生提供多種探究方法,,激發(fā)學生的自主意識,。
具體設(shè)計:先創(chuàng)設(shè)兔子吃蘿卜的情景,調(diào)動學生的學習積極性,。
通過買“老伯伯養(yǎng)了10只猴子,,每只兔子早上吃4個蘿卜,,晚上要吃3只蘿卜這些猴子一天共要吃掉多少個蘿卜?”列出兩種不同的式子,,讓學生通過觀察兩種不同的計算方法也得到了相同的結(jié)果,,這兩個算式也可用“=”連接。
然后讓學生觀察這兩個等式的特點,,仿造上面的等式填空,。
(4+5)×25=(14+25)×5=(37+125)×8=。
再讓學生觀察這幾組算式,,等號左邊的算式有什么相同點,?等號右邊的算式有什么相同點?等號左邊算式中的兩個加數(shù)與右邊算式中的什么數(shù)有關(guān)系,?左邊算式中的一個因數(shù)與右邊算式中的哪個數(shù)有關(guān)系?使之讓學生從中感受了乘法分配律的模型,。
從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,,結(jié)果不變,。”用字母形式表示:(a+b)×c=a×c+b×c,,他們確實能夠體會到兩個不同的算式具有相等的關(guān)系,。
第一步:通過資料獲取繼續(xù)研究的信息。
雖然所得的信息很簡單,,只是幾組具有相等關(guān)系的算式,,但這是學生通過活動自己獲取的,學生對于它們感到熟悉和親切,,用他們作為繼續(xù)研究的對象,,能夠調(diào)動學生的參與意識。
第二步:觀察算式,,尋找規(guī)律,。讓學生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的,?此時,,我不急于告訴學生答案,而是讓學生自己通過舉例加以驗證,。這里既培養(yǎng)了學生的猜測能力,,又培養(yǎng)了學生驗證猜測的能力。
第三步:應(yīng)用規(guī)律,,解決實際問題,。通過對于實際問題的解決,,進一步拓寬乘法分配律。這一階段,,既是學生鞏固和擴大知識,,又是吸收內(nèi)化知識的階段,同時還是開發(fā)學生創(chuàng)新思維的重要階段,。
本節(jié)課的可取之處:
1,、為學生提供了充分的數(shù)學活動機會,把學生的活動定位在感悟和體驗上,,引導學生用數(shù)學思維方式去發(fā)現(xiàn),、去探索。
2,、使學生在辨析與爭論中,,自然而然地完成猜測與驗證,形成清晰的認識,,在學生舉例中使學生感到乘法分配律的一個重要因素,,最后由特殊到一般總結(jié)字母公式。
3,、將模仿式的學習變?yōu)樘骄渴降膶W習,。
4、在本課的練習設(shè)計上,,能力求有針對性,,有坡度,同時也注意知識的延伸,。
本節(jié)課的不足之處:
1,、習題在安排上在充分理解《乘法分配律》的基礎(chǔ)上,可以再安排一些具有思考性的題目,,如78×99+78=78×(99+1),,為后面的簡便運算作伏筆,這樣教學效果會更好,。
2,、在數(shù)學術(shù)語上還得反復(fù)推敲,以達到準確無誤,。
3,、本堂課中新的教學理念有所體現(xiàn),但在具體的操作中還缺乏成熟的思考,,對學生的積極性沒有充分調(diào)動起來,。
我會堅持不斷學習理論知識,多聽課多向前輩們請教,,切實提高業(yè)務(wù)能力,。
乘法分配律教學反思篇十
讓學生在生動具體的情境中學習數(shù)學,,這是新課標倡導的新理念。我聯(lián)系學生的生活實際,,創(chuàng)設(shè)了學生熟悉的購買家具的場景,,配上我生動的語言敘述,一下子就把學生代入到了一個有數(shù)學味的問題情境中,,吸引了所有學生的注意,。緊接著的問題如果你是小紅,你想買什么家具呢,?根據(jù)小紅家的需要,,你們能提出哪些數(shù)學問題?更是激發(fā)了學生的思維,,學生個個積極動腦,,躍躍欲試。在學生充分提出各種問題的基礎(chǔ)上,,我選擇了有代表性的一個問題讓學生獨立解決,,極大地激發(fā)了學生的計算熱情。這一環(huán)節(jié)的教學,,讓學生經(jīng)歷了因用而算、以算激用的過程,,將算與用緊密結(jié)合,。
首先讓學生通過獨立計算,交流計算方法,,敘述計算過程等一系列的筆算乘法的技能訓練,,形成一定的算理。然后通過比較124和2132這兩題,,它們最大的區(qū)別是什么,?在乘的時候,有什么不同呢,?如果是四位數(shù),、五位數(shù)乘一位數(shù),你認為該怎么乘呢,?這兩個問題的討論,、交流,引導學生進行整理反思,,讓學生能通過兩位數(shù)乘一位數(shù)遷移到三位數(shù)乘一位數(shù),,進而自然聯(lián)想到四位數(shù)、五位數(shù)乘一位數(shù)的計算方法其實都是一樣的,,從而幫助學生將零散的知識串起來,,有利于學生數(shù)學模型的建立,。
需要改進的地方是:在學生探索出筆算方法后,我因為擔心學生沒有聽懂,,怕學生做錯,,說錯,故而引導太細,,學生的學習主動性調(diào)動的不夠,。如果我能充分相信學生,大膽放手,,讓學生獨立地去想,,去做,去說,,相信學生的,。表現(xiàn)會更出色。
乘法分配律教學反思篇十一
計算教學是小學數(shù)學教學中的重要組成部分,,幾乎每一冊的教材中都有計算的教學,,而其中的“簡便計算”教學更是計算教學的一部“重頭戲”。學好簡便運算,,不僅能降低計算的難度,,而且能提高計算的正確率和速度,更重要的是,,能使學生將學到的定理,、定律、法則,、性質(zhì)等運算規(guī)律融會貫通,,達到學以致用的目的,從而能培養(yǎng)學生良好的計算習慣,。
乘法分配律的教學是在學生學習了加法交換律,、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學的,。乘法分配律也是學習這幾個定律中的難點,。所以,對于乘法分配律的教學,我沒有把重點放在規(guī)律的數(shù)學語言表達上,而是注重引導學生積極主動的參與感悟,、體驗、發(fā)現(xiàn)數(shù)學規(guī)律的過程,,并且學會用辯證的思維方式思考問題,培養(yǎng)良好的思維習慣,,真正落實學生的主體地位,。
在教學中,,我主要做到了以下幾點:
興趣是形成良好學習習慣的催化劑。以學生身邊熟悉的情境為教學的切入點,,激發(fā)學生主動學習的需要,,為學生創(chuàng)設(shè)了與生活環(huán)境、知識背景密切相關(guān)的感興趣的學習情境,,也就是根據(jù)例題圖,,提出問題:買5件夾克衫和5條褲子,一共要付多少元,?通過兩種算式的比較,,喚醒了學生已有的知識經(jīng)驗,并有意識的蘊含新知識的教學,,激發(fā)了學生的學習興趣,。
配養(yǎng)學生主動探究的學習習慣,是數(shù)學老師在數(shù)學課上的重要任務(wù),。先讓學生根據(jù)提供的問題,,用不同的方法解決,從而發(fā)現(xiàn)(65+45)×5=65×5+45×5這個等式,,讓學生觀察,,初步感知“乘法分配律”。再展開類比:假如我們要選擇另外兩種服裝,,買的數(shù)量都相同,,一共要付多少元?你還能用兩種方法來求一共要付的錢嗎,?讓學生在再次解決問題的過程中進一步感受乘法分配律的存在。然后我引導學生觀察,,初步發(fā)現(xiàn)規(guī)律,,再引導學生舉例驗證自己的發(fā)現(xiàn),得到更多的等式,,繼續(xù)引導學生觀察,,直到發(fā)現(xiàn)規(guī)律,同時質(zhì)疑是否有反例,,再一致確定規(guī)律的存在,,并得出字母公式。
對于乘法分配律的教學,,我把重點放在讓學生通過多種方法的計算去完整地感知,,對所列算式進行觀察、比較和歸納,,大膽提出自己的猜想并舉例進行驗證,。讓學生在課堂上經(jīng)歷了數(shù)學研究的基本過程:即感知——猜想——驗證——總結(jié)——應(yīng)用的過程,,學生不僅自主發(fā)現(xiàn)了乘法分配律,掌握了乘法分配律的相關(guān)知識,,而且掌握了科學探究的方法,,數(shù)學思維的能力也得到了發(fā)展。
學生在學習數(shù)學知識的過程中能學會與人合作交流,,這也是一種良好的學習習慣,,而倡導課堂教學的動態(tài)生成是新課程標準的重要理念。在數(shù)學學習中,,每個學生的思維方式,、智力、活動水平都是不一樣的,。因此,,為了讓不同的學生在數(shù)學學習中都得到發(fā)展,我在本課教學中立足通過生生,、師生之間多向互動,,特別是通過學生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu),。學生在這樣一個開放的環(huán)境中博采眾長,,共同經(jīng)歷猜想、驗證,、歸納知識的形成過程,,共同體驗成功的快樂。既培養(yǎng)了學生的問題意識,,又拓寬了學生思維,,增強思維的條理性,學生也學得積極主動,。
在練習題型的設(shè)計上,,我基本尊重課本上知識的體系,在第4個練習中,,三組題目的對比練習主要是鞏固學生對乘法分配律的理解,,讓學生通過對比體會計算的簡便。而在計算的過程中會選擇更合理的方法進行計算,,這有助于幫助學生提高計算的正確性,,有利于學生養(yǎng)成良好的計算習慣。我在設(shè)計教學時,,先出示一組題,,在學生發(fā)現(xiàn)它們之間的聯(lián)系后,有意讓女生做簡便的一題,讓學生初步感知女生做的題比較簡便,,然后再出示第二組,,還是有意讓女生做簡便的一題,所以還是女生優(yōu)先,,至此我引導學生發(fā)現(xiàn):有時先加再乘比較簡便,,有時先乘再加比較簡便,可以根據(jù)實際情況的不同,,作出合理的選擇,,甚至可以根據(jù)乘法分配律先做適當改寫,使計算更簡便,。
這樣設(shè)計,,使學生經(jīng)歷了兩輪比賽,對運用乘法分配律可以使計算簡便有了初步的體驗,,并且產(chǎn)生了濃厚的學習興趣,,對下一課時運用乘法分配律進行簡便計算打下了良好的基礎(chǔ)。最后增加了一個變式題:“5件夾克衫比5條褲子貴多少元,?”這是乘法分配律的變式,,這在第三課時將會碰到這種題型,所以這里先埋下一個伏筆,。由基本題到變式題,,有機地聯(lián)系在一起。使學生逐步加深認識,,在弄清算理的基礎(chǔ)上,,學生能根據(jù)題目的特點,靈活地運用所學知識進行練習,。從課堂反饋來看,,學生熱情較高,能夠?qū)W以致用,。學生通過自己的努力以及和同學的交流合作,,思維能力得到了發(fā)展。
教學過程是一個不斷探討的過程,,不斷追尋的過程。作為一名數(shù)學老師,,希望能在與學生有限的接觸時間內(nèi)幫助學生更快更好地養(yǎng)成良好的數(shù)學學習習慣,,使我們的學生終身受益。這是一個值得我永遠追求并為之努力的目標,。