欧美成人永久免费_欧美日本五月天_A级毛片免看在线_国产69无码,亚洲无线观看,精品人妻少妇无码视频,777无码专区,色大片免费网站大全,麻豆国产成人AV网,91视频网络,亚洲色无码自慰

當前位置:網站首頁 >> 作文 >> 最新公因數最大公因數教學反思(匯總10篇)

最新公因數最大公因數教學反思(匯總10篇)

格式:DOC 上傳日期:2023-04-05 07:22:38
最新公因數最大公因數教學反思(匯總10篇)
時間:2023-04-05 07:22:38     小編:zdfb

在日常的學習、工作,、生活中,,肯定對各類范文都很熟悉吧。那么我們該如何寫一篇較為完美的范文呢,?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,,我們一起來看一看吧。

公因數最大公因數教學反思篇一

本節(jié)課我有意識的在一開始設計了搶答環(huán)節(jié),,讓學生判斷大屏幕上幾道題目的商的位數,,進而發(fā)現(xiàn)不同,激發(fā)興趣,,引入本節(jié)課的學習,。從效果上看,學生在判斷的過程中比較感興趣,,并能初步感受與舊知的聯(lián)系與不同,,達到了預期的目的。

本節(jié)課我在這方面做的不好,。在擺小棒理解算理環(huán)節(jié),,我領的比較多,學生和老師一問一答,,比如:“先分什么,?再分什么?每份是多少”等,,雖然學生最后也弄明白了該如何分小棒,,但學生的能力沒有得到提高。在于老師的建議下,,在重建設計中,,我會注意放手,設置大問題,。比如:“請同學們看著大屏幕上的小棒,,想一想應該怎樣分呢?先自己想一想,,然后同桌交流一下,?!弊寣W生帶著問題思考,在思考中考慮擺小棒的全過程,,而不是想一開始那樣,,思路被割裂開了。之后再全班交流,,教師也可適當引領點撥,,但這和我之前的設計感覺就不一樣了,后者更能體現(xiàn)學生主體地位,。在這方面,,我今后還應提高意識,不斷實踐,。

計算教學,,單純的讓學生計算勢必會使學生產生厭倦。我聯(lián)系學生實際和生活實際,,設計出多種多樣的練習題,,比如:計算之后讓學生思考問題“想一想:三位數除以一位數,什么時候商是三位數,,什么時候商是兩位數,?”或讓學生“火眼金睛”辨別對錯,或讓學生在解決實際問題中說一說先算什么再算什么,,感受解決實際問題的一般環(huán)節(jié),,將思路滲透到日常教學中,或在最后讓學生根據所學再來一組比賽等,,結合學生不同的計算階段提出不同的要求和練習形式,,使單調枯燥的計算練習變得生動有趣,達到了較好的教學效果,。

我將以本次講課為契機,,在今后的教學中應用本次活動學到的知識,加以實踐,,不斷提高自身的教學水平,。

公因數最大公因數教學反思篇二

學生的學習過程是一種特殊的認知過程,必須在積極主動的情況下在自己的逐步思考和探究中達到解決的目的,。

1、小組討論合作學習研究多了,,獨立思考就有所忽視,。從數學學習的本質來說,獨立思考是主流,,合作交流應在獨立思考的基礎上進行,。只有在獨立思考的前提下,,才有交流的可能。因此,,在本課設計時,,求兩數的最大公約數。先讓學生課前獨立探究方法,,在學生有充分獨立思考的基礎上再交流評價,。才真正實現(xiàn)每個學生潛質的開發(fā)和學生之間真正的差異互補。

2,、獨特的見解總是在主體迷戀執(zhí)著,,充分自由的狀態(tài)中萌芽出來的,在教學中應放下架子,,蹲下身子來傾聽學生,,相信每個學生都會有精彩的表現(xiàn)。正如陶行知所說的:“學生能做許多你不能做的事,,也能做許多你認為他不能做的事,。”不要小看了孩子,,要對每位孩子充滿信心,,從而使課堂頻頻發(fā)出精彩的光芒。如本課時在開放題的解答過程中,,學生能在一些簡單的嘗試開始,,從中逐步發(fā)現(xiàn)其中的規(guī)律,以至于應用獲得的規(guī)律來實現(xiàn)問題解決的最優(yōu)化,,不得不驚奇孩子能力的巨大,。

3、當數學問題情境作用于思考者時就有可能展開數學思維活動,,可以說,,問題的設計和問題的情境的創(chuàng)設是促進數學思考的客觀性因素。讓學生在問題情境中層層推出數學思考“還有沒有其他的方法”“他的方法你認為怎樣”“你是怎么想的”鼓勵表揚敢于思索的同學,,錯誤的回答也是對正確知識的一種辨析過程,,新知識對每個每一次學習的學生都是一個發(fā)現(xiàn)、創(chuàng)造的大空間,。

兩個數的最大公約數的教學反思有探究就有發(fā)現(xiàn),,有發(fā)現(xiàn)就是

學習的成功。成功所帶來的喜悅總是進一步學習的最大動力,,自主探究的課堂,,為個性不同的學生的發(fā)展留下了必要的空間,讓他們都有機會表達自己的思想,,以自己獨特的方式去學習數學,,發(fā)展知識,,各自體驗到學習數學的成功感。

公因數最大公因數教學反思篇三

教學內容:第26~28頁的例3,、例4,、“練一練”、“練習五”的第1~5題,。

1,、理解公因數的含義,掌握求兩個公因數和最大公因數的方法,。

2,、經歷“猜測——驗證”的數學學習過程,感受科學探究的一般方法,,培養(yǎng)抽象思維能力,,積累數學活動經驗。

3,、感受數學的奇妙,,培養(yǎng)對數學的積極情感。

教學重點和難點:理解公因數的含義,,掌握求兩個數最大公因數的方法,。

一、自主構建公因數意義

1,、出示邊長6厘米,、邊長4厘米的小正方形個若干以及一個長18厘米、寬12厘米的長方形,。

猜一猜:你覺得哪一種正方形可以將這個正方形鋪滿,。

2、組織學生同桌合作,,擺放小正方形,,

教師要幫助學有困難的小組完成活動任務。

3,、交流:邊長6厘米的正方形紙可以正好鋪滿這個長方形,。

為什么邊長6厘米的正方形正好鋪滿這個長方形?

結合剛才的操作活動體驗,,學生明白:因為12÷6=2(豎排放2行),,18÷6=3(橫排放3列),也就是6既是12的因數,,也是18的因數,,所以可以正好擺滿。

4、討論:還有哪些邊長是整厘米的正方形紙片也能正好鋪滿這個長方形,?簡單地解釋自己推測的理由。

5,、只要邊長的厘米數既是12的因數,,又是18的因數,就能正好鋪滿這個長方形嗎,?

6,、提問:4是12和18的公因數嗎?

7,、通過剛才的學習,,你有什么話想說嗎?

二,、獨立探索找公因數的方法,。

1、8和12的公因數有哪些,?最大公因數是幾,?

放手讓學生自己探索解決問題的方法,。

2,、交流:學生出現(xiàn)的方法:

(1)、分別寫出8和12的因數,,再找一找他們的公因數,;

(2),、先找8的因數,再從8的因數中找12的因數,;

……

交流時結合自己的方法說說這樣找的理由,,

3、“集合圈”

我們同樣也可以用集合圈表示8和12的公因數,。

出示集合圈,,先讓學生自己填寫,再說說每一部分表示的含義,。

4,、觀察比較,感受公因數的有限性,,

公因數的集合圈與公倍數有什么不同的地方,?為什么公因數集合圈中不需要省略號?引導學生從“因數的有限性”推想出“兩個數的公因數的個數是有限的”,。

5,、練一練

先讓學生根據要求完成。通過交流,進一步理解找兩個數公因數和最大公因數的方法,,感受兩者的聯(lián)系與區(qū)別,,

三.促進知識向技能的轉化

1、“練習五”第1題

讓學生獨立完成,,進一步理解集合圈的表示方法,,深化對求兩個數最大公因數的方法的認識。

2,、“練習五”第4題

⑴先讓學生自主判斷第一組數,,然后交流各自的方法,比較得出“利用2.3.5倍數的特征”進行判斷,,可以提高正確率,。

⑵出示其他幾組讓學生選擇合理的方法進行判斷,同時提醒兩個數的公因數可以有2.3.5中的多個,,為后面學習月份積累策略,。

3、“練習五”第5題

要啟發(fā)學生用不同的方法找出每組數的最大公因數,,提倡靈活運用各種策略快速解題,,

四、通過本節(jié)課的學習,,你有哪些收獲,?

五.作業(yè)布置

“練習五”第2.3題

這部分內容的結構與“公倍數和最小公倍數”基本相同,結合具體的情境,,引導學生通過觀察,、操作、分析,、比較,、抽象和概括等活動,探索并理解公因數,、最大公因數的含義,,掌握求兩個數的最大公因數的方法。

1,、我讓學生依托動手操作,,加強對比觀察,溝通新舊知識的聯(lián)系,,優(yōu)化概念引進的過程,。在教學例3時,我分四步組織學生

的活動,。第一步,,讓學生“分別用邊長6厘米和4厘米的正方形紙片鋪長18厘米、寬12厘米的長方形”,鋪前先思考:邊長是多少的正方形可以鋪滿這個長方形,?通過操作,,學生都知道邊長6厘米的正方形可以鋪滿長18厘米、寬12厘米的長方形,。引導學生具體感知公因數的含義,。第二步,組織討論“還有哪些邊長是整厘米數的正方形紙片也能正好鋪滿這個長方形”,,通過思考,學生明白:“只要邊長的厘米數既是12的因數,,又是18的因數,,就能正好鋪滿”這個長方形。第三步,,可以先讓學生說一說1,、2、3和6的共同特征,,再告訴學生1,、2、3和6的共同特征,,再告訴學生“1,、2、3和6既是12的因數,,又是18的因數,,它們是12和18的公因數。第四步,,讓學生說一說4為什么不是12和18的公因數,,使學生加深對公因數含義的理解,知道4是12的因數,,但不是18的因數,,所以4就不是12和18的公因數。通過正,、反兩方面的比較,,優(yōu)化概念的形成。

2,、著眼于問題的解決,,鼓勵學生自主探索,逐步形成概念結構,。教學例4是,,我讓學生先獨立思考,用自己的方法找出8和12的公因數和最大的公因數。再通過交流,,使學生在相互啟發(fā)的過程中進一步打開思路,,明確方法。由于學生已經積累了較為豐富的求兩個數的最小公倍數的方法,,因而這里的重點是讓學生在自主探索的基礎上合乎邏輯地表達自己的思考過程,,并體會不同方法的內在一致性。這時,,我適時引導學生建立概念結構:因數——公因數——最大公因數,,并且辨析這些概念的聯(lián)系與區(qū)別。此外,,考慮到學生也已經初步認識了用集合圖表示兩個相交的集合圈,,所以我讓學生根據對有關概念的理解,獨立把8和12的因數分別填在集合圖中的合適部分,,然后再看圖說說各自的想法,,說說每一個區(qū)域內的數分別表示什么,把靜態(tài)的集合圖轉化成動態(tài)的探索對象,,讓學生加深對集合圖的理解,,也使集合思想的滲透落到實處。

3,、練習的重點是讓學生通過操作和填空,,進一步理解求公因數和最大公因數的方法。讓學生在解決問題的過程中提煉解題策略,,優(yōu)化概念應用的過程,。

公因數最大公因數教學反思篇四

要成對找,這在教學因數時就是一個難點,。

猜測,、驗證的過程是學生進行探究活動的必要途徑。在實踐驗證的過程中,,我緊扣用邊長( )厘米的正方形鋪長方形,,能鋪( )層,每層鋪( )個,。并與其中有兩種正方形不能正好鋪滿長方形的情況作比較,,組織學生交流:“怎樣的正方形才能正好鋪滿這個長方形?”由于前面鋪墊充分,,學生很順利地得出了結論,。例題3的教學, “哪種哪種紙片能正好鋪滿這個長方形,?”“還有哪些邊長整厘米數的正方形能正好鋪滿這個長方形,?”“任何兩個數的公因數個數都是有限的嗎,?”將學生的思維一步步引向深入,就能激發(fā)學生自主探究的熱情,。

交流中,,應充分肯定學生的方法,學生在交流中出現(xiàn)問題時,,應讓他們自我修正,,自我完善。并對四種方法進行比較“看哪種方法更便捷”,。最大公因數的概念也要通過練習,,讓學生自己談對最大公因數的感悟。

公因數最大公因數教學反思篇五

公因數和最大公因數這一課應注重引導學生體驗“概念形成”的過程,,讓學生“研究學習”,、“自主探索”,學生不應是被動接受知識的容器,,而應是在學習過程中主動積極的參與者,是認知過程的探索者,,是學習活動的主體,。

在教學過程中,我們不僅要求學生掌握抽象的數學結論,,更應注重學生概念形成的過程,。應引導學生參與探討知識的形成過程,盡可能挖掘學生潛能,,能讓學生通過努力,,自己解決問題,形成概念,。通過創(chuàng)設生活情境,,幫助王叔叔鋪地裝,將學生自然地帶入求知的情境中去,,在學生已有知識經驗的基礎上放手讓學生去交流,、探索?!澳囊粋€正方形紙片能正好鋪滿長16厘米寬12厘米的長方形,,為什么?”這樣更利于培養(yǎng)學生自主探索,、提出問題和解決問題的能力,。接著進一步引導學生思考“還有哪些正方形紙片也能正好鋪滿長16厘米寬12厘米的長方形?”“為什么邊長是1厘米,、2厘米,、4厘米的地磚可以正好鋪滿,?而邊長是3厘米的正方形地磚不能正好鋪滿?”讓學生在反復地思考和交流中加深對公因數這一概念的理解,。

教師拋出問題后,,讓學生獨立探究。為了解決問題,,學生充分調動了已有知識經驗,、方法、技能,,找出“16和12的公因數和最大公因數”,。在這個過程中,由學生自己建構了公因數和最大公因數的概念,,是真正主動探索知識的建構者,,而不是模仿者,充分的發(fā)掘了學生的自主意識,。

1.增強師生和生生之間的互動

在教學過程中各個環(huán)節(jié)的銜接不夠緊湊,,本課時的教學內容比較枯燥,在課堂上如何調動學生的積極性,,活躍課堂氣氛,,使學生學的輕松、扎實,。今后的教學中,,在這一點上要都多下功夫。本課時的教學中,,在組織學生交流找“16和12的公因數”的方法時,,指名回答的形式過于單調,有的同學沒有選著擺一擺的方法,,而是直接用邊長去除以小正方形邊長來判斷,,我沒有很好利用學生生成的資源,幫助學生理解,,局限學生的思維發(fā)展,。

2.方法多樣化和方法優(yōu)化

在組織學生進行交流時,應該注重引導學生有層次地介紹各種不同的方法,。同時還要引導學生進行方法的比較和優(yōu)化,。

公因數最大公因數教學反思篇六

我在教學時,改變教材中從單調的計算引出概念的做法,,而是創(chuàng)設情景,,通過生動有趣的畫面,吸引學生積極思維,,其特有的感染力和表現(xiàn)力,,能直觀生動地對學生心理起到催化作用,,有效地激發(fā)了學生探究新知識的興趣,使教與學始終處于活化狀態(tài),。

“循環(huán)小數”是學生較難準確地掌握和表述的一個概念,,特別是表述其意義的“從某一位起”、“依次”,、“不斷”,、“重復出現(xiàn)”等抽象說法,學生難以理解,。這節(jié)課的內容也較多,,我打破教材編排順序,將教學內容重新整合,,靈活處理教材,,先以王鵬喜歡跑步引入計算400÷75讓學生計算發(fā)現(xiàn)商中重復出現(xiàn)一個相同的數字,再以王鵬喜歡游泳引出計算25÷22讓學生計算發(fā)現(xiàn)商中有兩個不斷重復出現(xiàn)的數字,。從而引導學生發(fā)現(xiàn)發(fā)現(xiàn)商的特點,,引出“循環(huán)小數”。這樣可以將難點分散,,各個擊破,。

《數學課程標準》指出:“教師應激發(fā)學生的學習積極性,向學生提供充分從事數學活動的機會,,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,,獲得廣泛的數學活動經驗,。”數學學習不應是簡單個體接受知識的過程,,而是一個主體對自己感興趣的且是現(xiàn)實的生活性主題的探究與發(fā)展的過程,。在新課中,我首先從生活中的現(xiàn)象入手,,再引導學生主動探究數學中的問題,,通過讓學生選擇自己感興趣的信息試算、觀察,、分析,、比較、討論等學習方式充分調動學生多種感官的參與,,給學生提供自主合作探究的空間,,讓學生全面參與新知的發(fā)生、發(fā)展和形成過程,,使學生真正體驗到探究的樂趣和做數學的價值,。

當然,,在這節(jié)課中也有很多不足之處。如我在教學中過多地注意預設,,使教學放不開手腳,,環(huán)節(jié)安排趨于飽和,這樣壓縮了學生思維空間,,在今后的教學中,,特別是環(huán)節(jié)預設應在于精、在于厚實,。

公因數最大公因數教學反思篇七

分析基礎知識:本單元是在學生已經理解和掌握倍數,、因數的含義,初步學會找一個數的倍數和因數,,知道一個數的倍數和因數的特點的基礎上進行教學的,。這部分內容既是“數與代數”領域基礎知識的重要組成部分,又是進一步學習約分和通分以及分數四則計算的基礎,。教材分兩段安排教學內容:第一段,,認識公倍數、最小公倍數,,探索找兩個數的最小公倍數的方法,;第二段,認識公因數,、最大公因數,,探索找兩個數的最大公因數的方法。此外,,在本單元的最后還安排了實踐與綜合應用《數字與信息》,。

以往教學公因數的概念,通常是直接找出兩個自然數的因數,,然后讓學生發(fā)現(xiàn)有的因數是兩個數公有的,,從而揭示公因數和最大公因數的概念。本單元教材注意以直觀的操作活動,,讓學生經歷公因數和最大公因數概念的形成過程,。這樣安排有兩點好處:一是學生通過操作活動,能體會公倍數和公因數的實際背景,,加深對抽象概念的理解,;二是有利于改善學習方式,便于學生通過操作和交流經歷學習過程,。在這節(jié)課上,,讓學生按要求自主操作,發(fā)現(xiàn)用邊長6厘米的正方形正好鋪滿長18厘米,,寬12厘米的長方形,。在發(fā)現(xiàn)結果的同時,,還引導學生聯(lián)系除法算式進行思考,對直觀操作活動的初步抽象,。再把初步發(fā)現(xiàn)的結論進行類推,,發(fā)現(xiàn)用邊長1厘米、2厘米,、3厘米6厘米的正方形都正好鋪滿長18厘米,,寬12厘米的長方形。在此基礎上,,引導學生思考1,、2、3,、6這些數和18,、12有什么關系。這時揭示公因數和最大公因數的概念,,突出概念的內涵是“既是……又是……”即“公有”,。并在此基礎上,借助直觀的集合圖顯示公因數的意義,。實實在在讓學生經歷了概念的形成過程,,效果較好。

例3中,,教師宣布游戲規(guī)則后,,放手讓學生動手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義,。例4更是學生探究廣闊的平臺,,教師拋出問題后,讓學生獨立探究,。為了解決問題,學生充分調動了已有知識經驗,、方法,、技能,八仙過海各顯神通,,找出了各種求“12和18的公因數和最大公因數”的方法,。在這個過程中,由學生自己建構了公因數和最大公因數的概念,,是真正主動探索知識的建構者,,而不是模仿者,充分的發(fā)掘了學生的自主意識,,也充分體現(xiàn)了教師駕馭教材,,調控學生的能力,。

課程標準只要求在1~100的自然數中,能找出10以內兩個自然數的公倍數和最小公倍數,二是只要求在1~100的自然數中,能找出兩個自然數的公因數和最大公因數,而不是用分解質因數的方法求出公倍數或公因數,。不教學用分解質因數的方法求最小公倍數和最大公因數還有兩個原因:一是通過列舉出兩個數的倍數或因數的方法,,找出公倍數或公因數。突出對公倍數和公因數意義的理解,;二是學生對用短除的形式求最大公因數和最小公倍數的算理理解有困難,,減輕學生的學習負擔。所以在教學找公倍數或公因數時,,應提倡思考方法多樣化,。例4教學中,學生得出了三種方法來尋找12和18的公因數和最大公因數,。(當然到底是三種還是兩種有待商榷,,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優(yōu)化的過程,,哪一種方法會更簡單,?通過對比,大多數學生贊同方法二,。通過討論,,引導學生以后解決此類問題時可以多運用較好的方法二。在這中間教師注意到了引導,、小結,、鼓勵,師生共同得出結論,。

復習題中回顧了四年級知識基礎,、列舉法和標記法,在例3中,,學生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形,?”時就有了基礎。例4中,,學生也知道用列舉法和標記法來解決問題,。

特別是用集合圖來表示因數和公因數的教學值得一提。有趣的游戲,,預料中的爭執(zhí),,恰到好處的體現(xiàn)了圖的妙用,圖的填法比一步步教學生如何填更有效,,也更不易遺忘,。練習五,第一題在填完集合圖后對公有因數和獨有因數意義的的提升,為下面的學習作了伏筆,。體會初步的集合思想,。

練一練,并沒有局限于畫畫△,、○,,找找公因數和最大公因數,而是進一步指導學生觀察,,發(fā)現(xiàn)公因數都比小的數?。?8和30中,18是小的數),,在18的因數中找公因數的確更快,、更好些。

所以請老師們在平時的教學中也去分析,、思考,,把握例題和練習中每個需要提升之處,在課堂中時時注意方法和策略的滲透,,較好地用實這套教材,。

公因數最大公因數教學反思篇八

教學 例3時先用邊長6厘米和4厘米的正方形紙片,分別鋪長18厘米,、寬12厘米的長方形,,教師選擇正方形紙片鋪長方形的活動教學公因數,是因為這一活動能吸引學生發(fā)現(xiàn)和提出問題,,能引導學生思考,。學生用同兩張正方形紙片分別鋪一個不同的長方形,面對出現(xiàn)的兩種結果,,會發(fā)現(xiàn)“為什么有時正好鋪滿,、有時不能”,“什么時候正好鋪滿,、什么時候不能”這些有研究價值的問題,。他們沿著長方形的邊鋪正方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關,,于是產生進一步研究長方形邊長和正方形邊長關系的愿望,。分析長方形的長、寬和正方形邊長之間的關系,,按學生的認知規(guī)律,設計成兩個層次: 第一個層次聯(lián)系鋪的過程與結果,,從長方形的長,、寬除以正方形的邊長沒有余數和有余數的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據邊長6厘米的正方形正好鋪滿長18厘米,、寬12厘米的長方形,、而邊長4厘米的正方形不能正好鋪滿長18厘米、寬12厘米的長方形的經驗,,聯(lián)想邊長幾厘米的正方形還能正好鋪滿長18厘米,、寬12厘米的長方形。先找到這些正方形,,把它們邊長從小到大排列,,知道這樣的正方形的個數是有限的。再用“既是12的因數,,又是18的因數”概括地描述這些正方形邊長的特征,。顯然,前一層次形象思維的成分較大,,思考難度較小,,對后一層次的抽象認識有重要的支持作用。

反思:突出概念的內涵,、外延,,讓學生準確理解概念。

我用“既是……又是……”的描述,,讓學生理解“公有”的意思,。例3先聯(lián)系用邊長1、2,、3,、6厘米的正方形正好能鋪滿長18厘米、寬12厘米的長方形紙片的現(xiàn)象,,從長方形的長,、寬分別除以正方形邊長都沒有余數,得出正方形的邊長“既是12的因數,,又是18的因數”,,一方面概括了這些正方形邊長的特點,另一方面讓學生體會“既是……又是……”的意思,。然后進一步概括 “1,、2、3,、6既是12的因數,,又是18的因數,它們是12和18的公因數”,,形成公因數的概念,。

由于知識的遷移,學生很容易想到用集合圖直觀形象地顯示公因數的含義。第27頁把8的因數和12的因數分別寫到兩個集合圈里,,這兩個集合圈有一部分重疊,,在重疊部分里寫的數既是8的因數,也是12的因數,,是8和12的公因數,。先觀察這個集合圖,再填寫第28頁的集合圖,,學生能進一步體會公因數的含義,。概念的外延是指這個概念包括的一切對象。

運用數學概念,,讓學生探索找兩個數的最大公因數的方法,。

例4教學求兩個數的最大公因數,出現(xiàn)了兩種解決問題的方法,。學生有的先分別寫出8和12的因數,,再找出它們的公因數和最大公因數。有的在8的因數里找12的因數,,這樣操作比較方便,,但容易遺漏。我有意引導學生選擇第一種,。練習五的第3題就是這種方法的應用,。

充分利用教育資源,自制課件,,協(xié)助教學,。

限于操作的局部性,我認真制作了實用的課件,,讓直觀,、清晰的頁面直接輔助我教學,學生表現(xiàn)積極,,課堂氣氛比較活躍,,提問、釋疑,、解惑,,練習的熱情很高。

本課設計目的是使學生學習公因數,、最大公因數的意義,,并學會找兩個數的最大公因數的方法,從整節(jié)課學生表現(xiàn)情況和課后作業(yè)反饋來看,,學生對本部分知識知識掌握較好,,學習積極并具有熱情,,就實效性講很令人滿意。

公因數最大公因數教學反思篇九

本節(jié)課教學的內容是認識公因數,、最大因數以及求兩個數的最大公因數的方法,這些知識是在學生掌握了因數,、倍數,、找因數的基礎上教學的。結合本節(jié)課的特點,,聯(lián)系本班學生的實際情況,,教師在教學過程中做了如下的嘗試

一、適時地滲透集合思想,。在教學例1時,,解題過程不僅呈現(xiàn)了用列舉法解決問題。還引導學生用集合圖來表示答案,,從而滲透了集合思想,,為后續(xù)的學習奠定感性認識。

二,、關注學生探究活動的空間,,將自主探究活動貫徹始終。在教學中,,教師為學生創(chuàng)設了三次自主探究的機會,。即一在情境中通過動手操作認識公因數,二用集合圖表示因數之間的關系,,三用自己的方法求出兩個數的最大公因數,。在這幾次的探究活動中,教師始終積極地調動學生的情感,,啟發(fā)他們主動參與,,引導學生感知、理解,,從而在腦中形成系統(tǒng)的知識體系,。

本節(jié)課是教學運用最大公因數的有關知識來解決生活中的實際問題。通過創(chuàng)設生活情境,,讓學生借助學具擺一擺,,算一算或在紙上用彩筆畫一畫的方法把出現(xiàn)的幾種情況記錄下來,既提高學生的學習積極性,,也讓學生體會到新知與生活的密切聯(lián)系,。同時,通過引導學生自主探索,、組織交流并驗證結論,,讓學生體會獲得成功的喜悅,,更加積極地探索新知,掌握所學知識,。

本節(jié)課的不足之處在于練習部分時間過于倉促,,沒有足夠的時間讓學生交流與理解,部分學困生掌握不夠到位,。這需要教師在今后教堂中合理安排時間,,避免時間過于緊迫。

公因數最大公因數教學反思篇十

“因數和倍數”的知識,,向來是小學數學教學的難點,。“最大公因數”這節(jié)課是在學生掌握了因數,、倍數,、找因數的基礎上進行的,通過這節(jié)課的學習,,學生會說出兩個數的公因數和最大公因數,,會求兩個數的最大公因數,并為后面學習分數的約分打好基礎,。反思這節(jié)課我認為有以下幾點:

1,、通過找8和12的因數,引出公因數的概念,。

教師引導學生先寫出8和12的因數,,再觀察發(fā)現(xiàn)8和12有公有的因數,自然引出了公因數的概念,。然后通過集合圈的形式,,直觀呈現(xiàn)什么是公因數,什么又是最大公因數,。促進學生建立”公因數和最大公因數”的概念,。

2、通過找18和27的最大公因數,,掌握找最大公因數的方法,。

掌握了公因數的概念之后,教師放手給予學生足夠的時間,,讓學生自主探究找最大公因數的方法,。交流反饋時,考慮到中下水平的學生,,教師只匯報了書本中的三種基本方法,,并沒有提到短除法。

本節(jié)課,,教師從認識公因數——理解最大公因數——探究找最大公因數的方法——相應的練習鞏固這幾個環(huán)節(jié)入手,,每個環(huán)節(jié)都是層層遞進,,環(huán)環(huán)相扣,促進了學生對概念的理解,。

《數學課程標準》指出:“學生是學習的主人,,教師是數學學習的組織者、引導者與合作者,?!痹诒竟?jié)課中,我努力將找最大公因數的概念教學課,,設計成為學生探索問題,解決問題的過程,,各個環(huán)節(jié)的學習流程,,體現(xiàn)了教師是組織者——提供數學學習的材料;引導者——引導學生利用各種途徑找到公因數,,最大公因數,;合作者——與學生共同探討規(guī)律。在整個教學的過程中,,學生真正成了課堂學習的主人,,尋找最大公因數的方法是通過學生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學生個性得到發(fā)揮,。

全文閱讀已結束,,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服